

International Journal of Mosquito Research

ISSN: 2348-5906 CODEN: IJMRK2 IJMR 2024; 11(3): 89-101 © 2024 IJMR www.dipterajournal.com Received: 04-05-2024 Accepted: 05-06-2024

Moutaz A Atia

- ¹ Department of Entomology, The National Centre for Malaria and Vector Control, Emirates Health Services, United Arab Emirates.
- ² Department of Epidemiology, Faculty of Public Health, University of Sinnar, Sudan

Mo'awia M Hassan

- ¹ Department of Biology, Faculty of Science, University of Tabuk, Kingdom of Saudi Arabia.
- ² Department of Parasitology and Medical Entomology, Tropical Medicine Research Institute, National Centre for Research, Ministry of Higher Education and Scientific Research, Sudan

Corresponding Author: Moutaz A Atia

- ¹ Department of Entomology, The National Centre for Malaria and Vector Control, Emirates Health Services, United Arab Emirates.
- ² Department of Epidemiology, Faculty of Public Health, University of Sinnar, Sudan

Checklist of mosquitoes (Diptera: culcidae) in Northern Sudan, Sudan

Moutaz A Atia and Mo'awia M Hassan

DOI: https://doi.org/10.22271/23487941.2024.v11.i4b.790

Abstract

Mosquitoes are considered among the most competent insect vectors to transmit pathogens to humans. Knowledge of the species of mosquitoes is crucial in designing and choosing the appropriate method to control mosquito species elsewhere. Mosquito species were surveyed and documented mosquito in northern Sudan an affected region by mosquito-borne diseases. Mosquitoes were collected in larvae and adult stages in different locations in the study area. A total of 4,803 mosquitoes including 9 species in 5 genera were recorded. Most of the mosquito collection represented *Culex* spp. (67%). The mosquito species were *Anopheles arabiensis* (n=1,473), *An. pharoensis* Theobald (n=9), *Culex quinquefasciatus* Say (n=1512), *Cx. univittatus* Theobald (n=1477), *Cx. poicilipes* Theobald (n=252), *Cx. bitaeniorhynchus* Giles (n=1), *Aedes vexans* Meigen (n=38), *Lutzia tigripes* de Grandpre & de Charmoy (n=17), and *Ochlerotatus caspius* Pallas (n = 24) This study provides a checklist of mosquitoes which is very important to design suitable control measures in northern Sudan and other regions with similar environmental settings.

Keywords: Checklist, mosquito, Anopheles, Culex, Aedes, Northern Sudan

1. Introduction

Despite the huge effort of control, mosquito-borne diseases (MBDs) have become a growing serious public health problem with a high global burden. This situation is largely due to the spread of mosquito vectors and pathogens into new areas as an effect of global climate change ^[1]. As a result, several outbreaks of MBDs such as Dengue fever (DF), yellow fever (YF), and Rift Valley fever (RVF) occurred in some regions of the world as in Sudan between the years 2005 and 2015 ^[2-6]. For example, an epidemic of RVF that occurred during the year 2019 in the Eldamar area, in northern Sudan has resulted in 1,129 cases and 19 deaths ^[6]. Furthermore, some of these MBDs such as malaria and dengue fever are endemic in different parts of Sudan ^[4,5,7,8].

Lewis during the 1950s provided distribution maps and identification keys for Anoheline, *Aedes*, and *Culex* mosquitoes in Sudan ^[9-11]. These studies revealed that mosquitoes of Sudan comprise 156 species, two subspecies of mosquitoes, and seven varieties of *Culicidae* ^[9-11]. Then after several published reports presented comprehensive studies on the mosquito species composition in Sudan which mostly from the Afrotropical ^[12-15].

Some of these mosquito species were recorded in northern Sudan including *An. arabiensis* Patton, *An. pharoensis* Theobald, *An. rufipes* Gough, *Cx. pipiens* Linnaeus, *Cx. univittatus* Theobald, *Cx. bitaeniorhynchus* Giles, and *Ae. vittatus* Bigot [10, 14, 16-18].

Among the mosquito species in Nothern Sudan, only two species represent vectors of MBDs in different regions of Sudan. *Anopheles arabiensis* is the major vector responsible for the transmission of malaria in most regions of Sudan [19, 20]. *Anopheles araiensis*, and *Cx. pipien* were suspected to have a role in the transmission of RFV in Sudan [3]. These two species were found infected with RFV during an outbreak of the disease in Sudan [3]. Moreover, *Cx. univittatus* was found infected with West Nile Virus (WNV) in Sudan [21]. However, other species have been reported as vectors of malaria (i.e. *An. pharoensis*, and *An. rufipes*) [22, 23], RVF (i.e. *Cx. bitaeniorhynchus*) [24], YF as well as DF (i.e. *Ae. vittatus*) [25].

Northern Sudan is located within semi-desert and arid desert biomes, therefore, it has less

diverse species and habitats for mosquitoes than other parts of Sudan. However, this study added more species to the mosquito fauna in northern Sudan. Such studies will help to control mosquito vectors, hence controlling MBDs in the region.

2. Materials and Methods

2.1. Study Area

Longitudinal entomological surveys were done during 2015 - 2016 in the River Nile State, Northern Sudan. Generally, the study was carried out during three different seasons; dry-cold season (Nov. – Feb.), hot-dry season (March – June), and wet season (July – October). Collection, preservation, and identification of mosquitoes (adult and larval stages) were done according to standard procedures [26].

2.2. Study sites

Nine sentinel sites were selected to conduct the entomological surveillance in this study; four constant sites (Albawga, Alzidab, Soola, and Gandato) and five cross-check sites (Almikharif, New Manaseer, Abusleem, Alsyalla, and Alsheriq)

2.3. Mosquitoes Identification

Field-collected wild and adult-reared mosquitoes from different sentinel sites were identified based on morphological features as described by ^[27-29,47]. Briefly, adult mosquitoes were pinned on card points and examined under a dissecting microscope.

2.4. Entomological Sampling Methods

Adults were collected using Pyrethrum Spray Catches (PSCs) from indoors and aspirators (sucking tubes) from outdoors, and larvae by using the standard dipping method. The collected adults were kept dry in labeled eppendorff tubes. Larvae were reared to adults in the insectary. All procedures were as described by WHO [26].

2.5. Data analysis

The data obtained from different parts of this study were analyzed using the computer software SPSS ver. 22. Data from all parts of this study were analyzed using descriptive analysis.

3. Results and Discussion

3.1. Species Composition

A total of 4,803 mosquitoes comprising nine species belonging to five genera were recorded in this study. The mosquito species in the genus *Culex* were the most dominant (67.5%) and widely distributed in the study area. The highest proportion of mosquito catches was *Culex* (67.5%), followed

by Anopheles species (30,9%) (Figure 1). The mosquito species included Anopheles arabiensis (n=1,473), An. pharoensis Theobald (n=9), Culex quinquefasciatus Say (n=1512), Cx. univittatus Theobald (n=1477), Cx. poicilipes Theobald (n=252), Cx. bitaeniorhynchus Giles (n=1), Aedes vexans Meigen (n=38), Lutzia tigripes de Grandpre & de Charmoy (n=17), and Ochlerotatus caspius Pallas (n = 24).

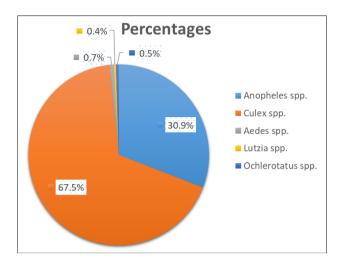
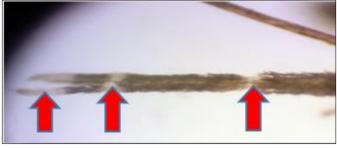


Fig 1: Percentages of mosquito genera in Northern Sudan region, Sudan.

3.2. Anopheles spp.


3.2.1. Anopheles (Cellia) arabiensis Patton, 1905

Anopheles arabiensis is a sibling species of An. gambiae complex [30]. It is one of the most common and major malaria vectors throughout sub-Saharan Africa [31,32]. Similarly, An. arabiensis is the most abundant, with a wide range of distribution in Sudan including the northern, central, and eastern parts of the country [14, 16, 17, 19, 33]. It is the potential malaria vector in Sudan [19, 34]. The presence of An. arabiensis in all surveyed sites in this study indicates a serious health threat in this area because it is the only malaria vector in Sudan [19, 34].

The important morphological characteristics according to

- 1. **Head:** palps with 3 pale bands, and hind tarsus 4 and 5 not entirely pale (Fig. 2).
- 2. **Legs:** speckled legs (Fig. 3).
- 3. **Wings:** The dark and light bands on the wings with pale bands (Fig. 3).

However, the species can be identified and confirmed based on molecular methods [35].



Fig 2: Palps with 3 pale bands

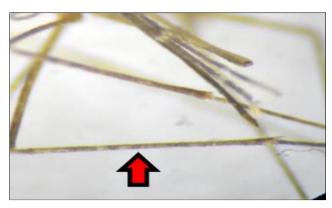
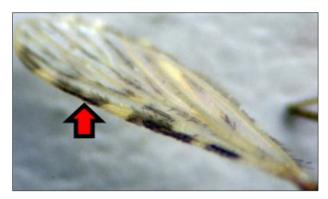



Fig 3: Legs speckled, sometimes sparsel.

Fig 4: The 3rd main dark area of vein with a pale interruption.

3.2.2. Anopheles (Cellia) pharoensis Theobald, 1901

Anopheles (Cellia) pharoensis Theobald, 1901 is widely distributed in Ethiopia, Somalia, and the Sudan and also extends into Egypt [36]. It plays as a potential vector in Egypt, and found to be more exophilic than endophilic, more exophagic than endophagic, and zoophagic rather than anthropophagic [37-39] and at best it is a feeble vector of malaria in tropical Africa [40]. In the Sudan, An. pharoensis co-exists with An. arabiensis particularly in irrigated and swampy areas [41]. In the northern sudan, An. Pharoensis breeds in swamp and pool with vegtations, and prefer resting by day in vegtation rather in houses [42]. Moreover, An. pharoensis is considered a nuisance pest, especially in the irrigated area of the Gezira region where it causes a great deal of discomfort by biting humans [43]. However, it has not been incriminated as a malaria vector in the Sudan [44]. This species was found to spread in Northern, Gezira, Blue Nile, and Gedarif States [12, 44, 45, 46]. In this study, however, this species was recorded in very low densities and was recorded in only three of the surveyed sites (Alzidab, Soola, and Gandato).

The important taxonomic features of this species are

- **1. Head:** Palps shaggy with 4 pale bands, some scattered pale scales which may give the palps a speckled appearance (Fig. 5).
- **2. Abdomen:** Abdominal segments with laterally projecting tufts of scales (Fig. 6).
- **3. Legs:** Hind tarsus 1-4, at least, with apical pale bands (Fig. 7).
- **4. Wings:** with abundant pale areas, costa with at least 4 pale spots (Fig. 8).

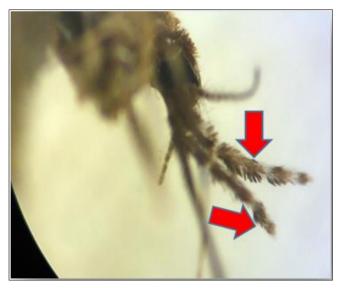


Fig 5: Palps shaggy with 4 pale bands

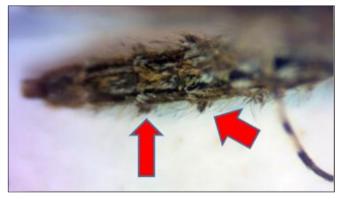


Fig 6: Laterally projecting tufts of abdominal scales.

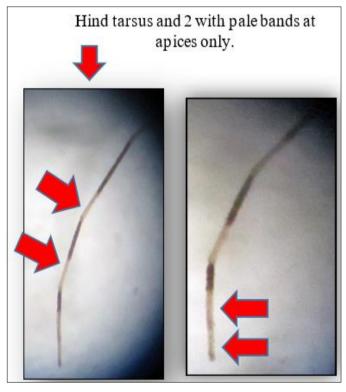
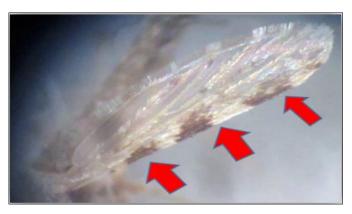



Fig 7: Hind tarsus 5 and about apical half of 4 pale

Fig 8: Wing with abundant pale areas, costa with at least 4 pale spots.

3.3. *Culex* spp.

3.3.1. Culex (Culex) quinquefasciatus Say, 1823

Culex quinquefasciatus Say, 1823 (originally named Culex pipiens fatigans) is a geographically widespread worldwide and it is responsible for the transmission of LF, avian malaria, and arboviruses including St. Louis encephalitis virus, Western equine encephalitis virus, Zika virus and WNV [48-52]. It is taxonomically considerd as a member of the Cx. pipiens species complex [53]. Mainly, Cx. quinquefasciatus occurs in tropical and sub-tropical areas and usually, it is distributed within the latitudes 36° N and 36° S. [11, 54, 55].) in the Sudan. Cx. quinquefasciatus is known to be a domestic annoying mosquito and it has been found to transmit lymphatic filariasis in the Blue Nile area and former southern Sudan [56].

The important Taxonomic characteristics of this species:

- 1. Head: No post-spiracular scales or bristles (Fig. 9).
- 2. Abdomen: Abdominal basal bands in the shape of a half-moon (Fig. 10); sterna Mostly white (Fig. 11).
- 3. Legs: Dark, un-banded legs (Fig. 12).

In this study, Cx. quinquefasciatus was recorded in all surveyed sentinel sites.

Fig 9: No post-spiracular scales or bristles.

Fig 10: Thick, half-moon-shaped, basal bands on abdominal terga.

Fig 11: Mostly white underside of abdomen (sterna).

Fig 12: Dark, un-banded. legs

3.3.2. Culex (Culex) uninitiates Theobald, 1901

Culex (Culex) univittatus Theobald, 1901 is a competent vector of arboviruses with public health importance, such as WNV ^[57-59]. In Africa, *Cx. univittatus* makes up the largest fraction of WNV-infected mosquitoes ^[60]. *Culex Univittatus* is the commonest and the most widely distributed Culicine in the Sudan ^[10, 12, 46, 61], but is scarcely ever found biting man. It occurs in almost every part of the Sudan except the desert, but in the extreme south-west and near the coast it is less common than elsewhere ^[11]. This species is present in 6 sites (Albawga, Alzidab, Soola, Gandato, Almikharif, and Alsyalla).

The important morphological characteristics of this species

- 1. **Head:** Proboscis entirely dark-scaled (Fig. 13),
- **2. Thorax:** Postspiracular (Fig. 14), and prealar scales are present (Fig. 15).
- **3. Legs:** presence of a pale stripe on the anterior surface of the hind tibia (Fig. 16).

Fig 13: Proboscis entirely dark-scaled.

Fig 14: Post-spiracular scales present

Fig 15: Pre-alar scales.

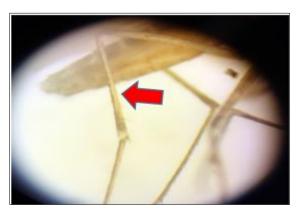


Fig 16: Presence of a pale stripe on the anterior surface of the hind tibia.

3.3.3. Culex (Oculeomyia) poicilipes Theobald, 1903

Culex (Oculeomyia) poicilipes Theobald, 1903 is widely distributed worldwide and is considered a potential vector of many serious human and animal diseases, such as RVF infection [62-66]. This species was recorded in all the surveyed constant sites in the present study (i.e. Albawga, Alzidab, Soola, and Gandato) as well as in two of the cross-check sentinel sites; viz. New Manaseer and Alsyalla. In a previous study in the Sudan, adults and larvae of *Cx. poicilipes* collected from Khartoum and White Nile States were found infected with the Rift Valley virus [3]. This species was also collected from different areas in the Sudan including Khartoum, White Nile, Gedarif, and Blue Nile States [3, 12, 46].

The important morphological characteristics of this species

- **1. Head:** Proboscis with a median pale band (Fig. 17).
- 2. Thorax: Mesepimeral setae absent (Fig. 18).
- **3. Legs:** Rows of pale spots adorn its femora and tibiae (Fig. 19), tarsi with narrow pale rings at the joints (Fig. 20).
- **4. Dark:** Scaled wing (Fig. 21).

In this study recorded in 6 sites (Albawga, Alzidab, Soola, Gandato, New Manaseer, and Alsyalla).

Fig 17: Proboscis with a well-defined pale band in middle.

Fig 18: No lower mesepimeral bristle.

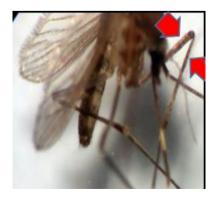


Fig 19: Femora and tibiae with rows of small pale spots

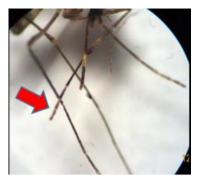


Fig 20: Tarsi with narrow pale rings at the joints

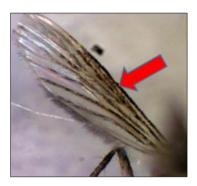


Fig 21: All Wings with scales dark, those on fork very narrow and long

3.3.4. Culex (Oculeomyia) bitaenorhynchus Giles, 1901

Culex (Oculeomyia) bitaeniorhynchus Giles, 1901 (formerly Cx. ethiopicus) is a cosmopolitan species that is an extremely common and widespread mosquito species [67-71]. Cx. bitaeniorhynchus is considered a vector of Wuchereria bancrofti in New Guinea [68]. and Japanese Encephalitis Virus (JEV) in India and Thailand [69, 71, 72]. However, this species was not found to have a role in the transmission of the disease in the Sudan. In this study, Cx. bitaeniorhynchus was collected as a single specimen from Alzidab site, this is consistent with the study done by Lewis [11] in the same study area and came up with same result.

The important morphological characteristics of this species

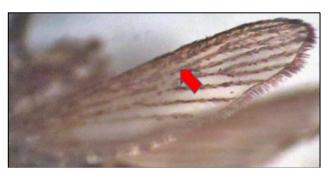

- **1. Head:** Proboscis with median pale band and two dorsolateral pale spots at labellum (Fig. 22).
- **2. Thorax:** Acrostichal setae present; lower mesepimeral setae absent.
- **3. Abdomen:** with distinct apical bands of pale-yellow scales (Fig. 23).
- **4. Wing:** with intermixed pale and dark scales, most of the scales rather broad (Fig. 24)

Fig 22: Proboscis with a pale spot at tip above (before labella).

Fig 23: Abdominal tergites with pale apical bands of even width.

Fig 24: Wing with intermixed pale and dark scales, most of the scales rather broad.

3.4. Aedes spp.

3.4.1. Aedes (Aedimorphus) vexans Meigen, 1930.

Aedes (Aedimorphus) vexans Meigen, 1930, the inland floodwater mosquito, is a global and common pest mosquito. Aedes vexans has a worldwide distribution, and it is known to aggressively bite humans and is a competent vector of several arboviruses [73]. These mosquitoes are capable of transmitting WNV, St. Louis encephalitis virus, Western and Eastern equine encephalitis viruses, and RVF virus [74-76]. However, it has been suggested that Ae. vexans are probably vectors of zoonotic WNV that occur between horses and bird hosts [77]. Aedes vexans have also been found a competent vector of ZIKV; however, with low transmission rates for the virus [76]. Moreover, Ae. vexans was found infected with RVF viruses in Khartoum State, Sudan [78]. In this study, Ae. vexans was recorded in 3 sites (Albawga, Alzidab, and Soola,).

The important morphological characteristics of this species

- **1. Head:** Proboscis is brown with numerous white scales ventrally (Fig. 25), vertex with median narrow scales. (Fig. 26).
- **2. Thorax:** Scutal scales are uniformly brown, and scutellum with pale, narrow scales (Fig. 27); Paratergite and pleurae -including post-spiracular area- with broad flat whitish scales (Fig. 28).
- **3. Abdomen:** with broad pale bands (Fig. 29).
- **4. Legs:** The femora is pale beneath with a rather heavy sprinkling of pale scales on the dark parts (Fig. 30).
- **5. Legs:** All segments of the hind tarsi with narrow white basal rings, and the last two hind tarsals are not all dark (Fig. 31).
- **6. Wing:** A few pale scales at the base of Costa and first vein, no pale fringe scales along the posterior margin; wing scales are sparse, dark, and pale (Fig. 32).

Fig 25: Proboscis brown with numerous white scales ventrally.

Fig 26: Decumbent scales of vertex

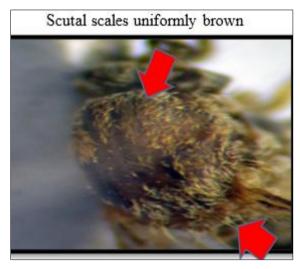


Fig 27: Scutal scales brown, and Scutellum with narrow scales only.

Fig 28: Paratergite and pleurae with broad flat whitish. scales

Fig 29: Abdomen with broad pale bands.

Fig 30: Femora pale beneath and with a rather heavy sprinkling of pale scales on the dark parts.

All segments of hind tarsi with narrow white basal rings

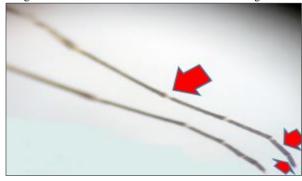


Fig 31: Last two hind tarsals not all dark.

Fig 32: Dark scaled, at most a few pale scales at base of Costa and first vein.

3.5. Lutzia spp.

3.5.1. Lutzia (Meta lutzia) tigripes de Grandpre & de Charmoy, 1901 (formerly Cx. tigripes)

This species was recorded in Africa and Asia [79-82]. Although it is widespread in the southern and central regions of Sudan [83], this was the first record of this mosquito species in the study area. *Lutzia tigrepis* has not been reported to transmit any disease to humans. However, larvae of *L. tigripes* act as predators that eat other mosquito species and immature stages

of aquatic insects, and more specifically, they prefer larvae of *Ae. aegypti* may ^[83, 84]. A similar observation was recorded in this study, where one larva of *L. tigripes* ate several larvae of mosquitoes during mosquito rearing and maintenance in the laboratory (Fig. 37).

This is the first record of this mosquito species in Northern Sudan. During this study, *L. tigrepis* was recorded in 2 sites (Soola and Almikharif).

The important morphological characteristics of this species

- **1. Thorax:** No post-spiracular scales (Fig. 33); A large patch of white scales on the upper part of mesepimeron (Fig 34).
- **2. Abdomen:** Apical abdominal bands (Fig. 35).
- **3. Legs:** Front and middle femora and tibiae as seen from in front each with a row of about ten small pale spots on a dark ground (Fig. 36).

Fig 33: No post-spiracular. scales

Fig 34: large patch of white scales on upper part of mesepimeron.

Fig 35: Apical abdominal bands.

Fig 36: Front and middle femora and tibiae with a row of pale spots on a dark ground.

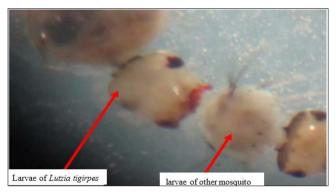


Fig 37: Larvae of Lutzia tigirpes feed on larvae of other mosquito

3.6. Ochlerotatus spp 3.6.1. Ochlerotatus caspius Pallas, 1771

Ochlerotatus (Ochlerotatus) caspius Pallas, 1771 (formerly Ae. caspius) is widely distributed worldwide and it mainly occurs in coastal areas [85-89]. It is considered as a significant nuisance biting mosquito species [90,91]. Ochlerotatus caspius is a vector of WNV in several countries in Europe [92-95]. In addition, O. caspius can also transmit microfilariae (Dirofilaria immitis) [96]. This species has been recorded in the Sudan, however, its role in the transmission of human disease has been discussed [83,97]. In this study, O. caspius was recorded in three sites (Albawga, Soola, and Abusleem).

The important morphological characteristics of this species

- **1. Head:** Palpi is largely pale-scaled (Fig. 38); proboscis is extensively pale beneath (Fig. 39).
- 2. Thorax: Scutal scales are mostly fawn-colored, normally with two white lines running the whole length (Fig. 40); apn scales mostly broad and flat, white; ppn with narrow pale scales mostly broad and flat, white, and several lower mesepimeral bristles (Fig. 41); the dorsal surface is largely creamy (Fig. 42).
- **3. Abdomen:** Sternites mainly pale the dorsal, and the dorsal surface is largely creamy (Fig. 43).
- **4. Legs:** With heavily sprinkled with pale scales and creamy rings extend about equally and rather broadly (Fig. 45).
- **Wings:** with a very heavy sprinkling of pale scales on all veins including the costa (Fig. 44).

Fig 38: Palpi largely pale scaled.

Fig 39: Proboscis extensively pale beneath.

Fig 40: Scutal scales coloured, with two white lines.

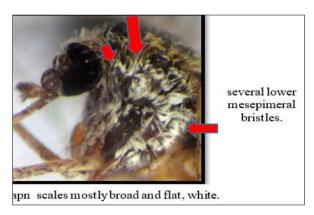


Fig 41: ppn with narrow pale scales mostly broad and flat, white.

Fig 42: Dorsal surface largely creamy.

Fig 43: Sternites mainly pale.

Fig 44: Very heavy sprinkling of pale scales

Fig 45: Heavily sprinkled with pale scales creamy rings.

References

- Campbell-Lendrum D, Manga L, Bagayoko M, Sommerfeld J. Climate change and vector-borne diseases: What are the implications for public health research and policy? Philosophical Transactions of the Royal Society B. 2015;370:20130552.
- World Health Organization (WHO). Emergency response to the Yellow fever outbreak in Sudan. World Health Organization, Switzerland, Geneva; c2005.
- Seufi AM, Galal HG. Role of *Culex* and *Anopheles* mosquito species as potential vectors of Rift Valley fever virus in Sudan outbreak, 2007. BMC Infectious Diseases. 2010:10:65.
- 4. Malik A, Earhart K, Mohareb E, Saad M, Saeed M, Ageep A, *et al.* Dengue hemorrhagic fever outbreak in children in Port Sudan. Journal of Infection and Public Health. 2011;4:1-6.
- UNOCHA. A report on viral haemorrhagic fever in Darfur states. Humanitarian Bulletin Sudan. 2015;43:19-25
- Ahmed A, Ali Y, Elduma A, Eldigail MH, Mhmoud RM, Mohamed NS, *et al*. Unique Outbreak of Rift Valley Fever in Sudan, 2019. Emerging Infectious Diseases. 2020;26(12):3030-3033.
- 7. Elmahdi ZA, Nugud AA, Elhassan IM. Estimation of malaria transmission intensity in Sennar state, central Sudan. Eastern Mediterranean Health Journal. 2012;18(9):951-956.
- National Malaria Control Programme (NMCP). Sudan Report on: National Strategic Plan for RBM (2014-2016); c2014.
- 9. Lewis DJ. The *Aedes* mosquitoes of the Sudan. Annals of Tropical Medicine and Parasitology. 1955;49(2):164-173.
- 10. Lewis DJ. The anopheline mosquitoes of the Sudan. Bulletin of Entomological Research. 1956;47:475-494.
- 11. Lewis DJ. The *Culex* mosquitoes of the Sudan. Bulletin of Entomological Research. 1956;47(4):703-721.
- 12. El Amin YE, Elaagip AH, Frah EA, Hassan MM, El Rayah IE, Mohammed YO. Fauna of mosquitoes in endemic areas of malaria and lymphatic filariasis at Ed Damazin Locality, Blue Nile State, Sudan. International Journal of Current Research. 2013;5(5):1151-1154.
- 13. Mohamed AH, Ali AM, Harbach RE, Reeves RG, Ibrahim KM, Ahmed MA, et al. Aedes mosquitoes in the

- Republic of the Sudan, with dichotomous keys for the adult and larval stages. Journal of Natural History. 2017;51(9-10):513-529.
- 14. Atia MA, Bashir NHH, Azrag RS, Hassan MM. Fauna and spatial distribution of mosquitoes (Diptera: Culicidae) in River Nile State, Sudan. International Journal of Mosquito Research. 2021;8(1):123-129.
- 15. Simsaa MAA, Harbach RE, Almalik AMA, Ahmed EM, Eisa AA, Mohamed AH, *et al. Culex* mosquitoes (Diptera: Culicidae) recorded along the Nile River in central and northern Sudan, with a key for the identification of all species of the genus known to occur in the country. Zootaxa. 2021;4963(3):401-411.
- 16. Ageep TB, Cox J, Hassan MM, Knols BG, Benedict MQ, Malcolm CA, *et al.* Spatial and temporal distribution of the malaria mosquito *Anopheles arabiensis* in northern Sudan: Influence of environmental factors and implications for vector control. Malaria Journal. 2009:8:123.
- 17. Hassan MM, Zain HM, Basheer MA, Elhaj HEF, El-Sayed BB. Swarming and mating behavior of male *Anopheles arabiensis* Patton (Diptera: Culicidae) in an area of the Sterile Insect Technique Project in Dongola, northern Sudan. Acta Tropica. 2014, 132(Suppl)
- 18. Atia MA, Bashir NHH, Azrag RS, Hassan MM. Resting behaviors and seasonal variation of *Anopheles arabiensis* in River Nile State, Sudan. International Journal of Mosquito Research. 2022;9(1):99-104.
- 19. Hamad AA, Nugud Ael H, Arnot DE, Giha HA, Abdel-Muhsin AM, Satti GM, *et al*. A marked seasonality of malaria transmission in two rural sites in eastern Sudan. *Acta Tropica*. 2002;83:71-82.
- 20. Altahir O, AbdElbagi H, Abubakr M, Siddig EE, Ahmed A, Mohamed NS. Blood meal profile and positivity rate with malaria parasites among different malaria vectors in Sudan. Malaria Journal. 2022;21:124.
- 21. Mohamed RAE, Abdelgadir DM, Bashab HM, Al-Shuraym LA, Aleanizy FS, Alqahtani F, *et al.* First record of West Nile Virus detection inside wild mosquitoes in Khartoum capital of Sudan using PCR. Saudi Journal of Biological Sciences. 2020;27(12):3359-3364.
- 22. Carrara GC, Petrarca V, Niang M, Coluzzi M. *Anopheles* pharoensis and transmission of *Plasmodium falciparum* in the Senegal River delta, West Africa. Medical and Veterinary Entomology. 1990;4:421-424.
- 23. Saili K, de Jager C, Sangoro OP, Nkya TE, Masaninga F, Mwenya M, *et al. Anopheles rufipes* implicated in malaria transmission both indoors and outdoors alongside *Anopheles funestus* and *Anopheles arabiensis* in rural south-east Zambia. Malaria Journal. 2023;22:95.
- 24. Eifan S, Hanif A, Nour I, Alqahtani S, Eisa ZM, Dafalla O, *et al.* Distribution and Molecular Identification of *Culex pipiens* and *Culex tritaeniorhynchus* as Potential Vectors of Rift Valley Fever Virus in Jazan, Saudi Arabia. Pathogens. 2021;10:1334.
- 25. Sudeep AB, Shil P. *Aedes vittatus* (Bigot) mosquito: An emerging threat to public health. Journal of Vector Borne Diseases. 2017;54:295-300.
- World Health Organization (WHO). Malaria entomology and vector control (Learner's Guide). Part I W.H.O./CDS/CPE/SMT/200.18 Rev.1; c2003. p. 6, 21-26, 31-34.

- 27. Gillies MT, Coetzee M. A Supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region). Publications of the South African Institute for Medical Research; c1987.
- 28. Edwards FW. Mosquitoes of the Ethiopian region. III culicine adults and pupae. London, British Museum (Natural History); c1941.
- 29. Harbach RE. Pictorial keys to the genera of mosquitoes, subgenera of *Culex* and the species of *Culex* (*Culex*) occurring in southwestern Asia and Egypt, with a note on the subgeneric placement of *Culex deserticola* (Diptera: Culicidae). Mosquito Systematics. 1985;17(2):83-107.
- 30. Coetzee M. Distribution of the African malaria vectors of *Anopheles gambiae* complex. American Journal of Tropical Medicine and Hygiene. 2004;70:103-104.
- 31. Coetzee M, Craig M, le Sueur D. Distribution of African malaria mosquitoes belonging to the *Anopheles gambiae* complex. Parasitology Today. 2000;16:74-77.
- 32. Okello PE, Van Bortel W, Byaruhanga AM, Correwyn A, Roelants P, Talisuna A, *et al.* Variation in malaria transmission intensity in seven sites throughout Uganda. American Journal of Tropical Medicine and Hygiene. 2006;75:219-225.
- 33. Mahgoub MM, Kweka EJ, Yousif E, Himeidan YE. Characterisation of larval habitats, species composition and factors associated with the seasonal abundance of mosquito fauna in Gezira, Sudan. Infectious Diseases of Poverty. 2017;6:23.
- 34. El Sayed BB, Arnot DE, Mukhtar MM, Baraka OZ, Dafalla AA, Elnaiem DA, *et al.* A study of the urban malaria transmission problem in Khartoum. *Acta Tropica*. 2000;75:163-171.
- 35. Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the *Anopheles gambiae* complex by the polymerase chain reaction. American Journal of Tropical Medicine and Hygiene. 1993;49:520-529.
- 36. Zahar A. Review of the ecology of malaria vectors in the WHO Eastern Mediterranean Region. Bulletin of the World Health Organization. 1974;50:427-440.
- 37. Kenawy MA. Anopheline mosquitoes (Diptera: Culicidae) as malaria carriers in A. R. Egypt History and Present status. The Journal of the Egyptian Public Health Association. 1988;63:67-85.
- 38. Kenawy MA. Review of *Anopheles* Mosquitoes and Malaria in Ancient and Modern Egypt. Journal of Mosquito Research. 2015;5(4):1-8.
- 39. Wassim NM. Secondary structure and sequence of ITS2-rDNA of the Egyptian malaria vector *Anopheles* pharoensis (Theobald). Journal of the Egyptian Society of Parasitology. 2014;44(1):197-204.
- 40. Gillies MT, De Meillon B. The Anophelinae of Africa South of the Sahara. Publications of the South African Institute for Medical Research. 1968;54.
- 41. Akood MA. The use of serology and tests for drugs and insecticide resistance in studying problems of malaria control in Sudan. Ph.D. Thesis, London School of Hygiene & Tropical Medicine, 1980.
- 42. Lewis DJ. The Mosquitos of the Jebel Auliya Reservoir on the White Nile. Bulletin of Entomological Research. 1948;39:133-157.
- 43. El Safi SH, Haridi AM. Field trial of the insect growth regulator, Dimilin, for control of *Anopheles* pharoensis in Gezira, Sudan. Journal of the American Mosquito

- Control Association. 1986:2(3):374-375.
- 44. El Gaddal AA, Haridi AM, Hassan FT, Hussein H. Malaria control in the Gezira Managil Irrigated Scheme of the Sudan. Journal of Tropical Medicine and Hygiene. 1985;88:153-159.
- 45. Dukeen MYH, Omer SM. Ecology of malaria vector *Anopheles arabiensis* Patton (Diptera: Culicidae) by the Nile in north Sudan. Bulletin of Entomological Research. 1986;76:451-467.
- 46. Cobani MYI, Bashir NHH, Abd Elrahman SH. Mapping of *Anopheles* mosquitoes (Diptera: Culicidae) in Gedarif State, Eastern Sudan. International Journal of Mosquito Research. 2017;4(1):28-32.
- 47. Walter Reed Biosystematics Unit (WRBU). https://wrbu.si.edu; c2021.
- 48. Reiter ME, Lapointe DA. Larval habitat for the avian malaria vector (Diptera: Culicidae) in altered midelevation mesic-dry forests in Hawai'i. Journal of Vector Ecology. 2009;34(2):208-216.
- 49. Eastwood G, Kramer LD, Goodman SJ, Cunningham AA. West Nile virus vector competency of *Culex quinquefasciatus* mosquitoes in the Galapagos Islands. American Journal of Tropical Medicine and Hygiene. 2011;85(3):426-433.
- 50. Diaz LA, Flores FS, Beranek M, Rivarola ME, Almirón WR, Contigiani MS. Transmission of endemic St Louis encephalitis virus strains by local *Culex quinquefasciatus* populations in Cordoba, Argentina. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2013;107(5):332-334.
- 51. World Health Organization (WHO). A global brief on vector-borne diseases. World Health Organization, Geneva, Switzerland; c2014.
- 52. Kenney VJ, Romo H, Duggal NK, Tzeng WP, Burkhalter KL, Brault AC, *et al.* Transmission incompetence of *Culex quinquefasciatus* and *Culex pipiens* pipiens from North America for Zika virus. American Journal of Tropical Medicine and Hygiene. 2017;96(5):1235-1240.
- 53. Turell MJ. Members of the *Culex pipiens* complex as vectors of viruses. Journal of the American Mosquito Control Association. 2012;28(4 Suppl):123-126.
- 54. Lewis DJ. Observation on the distribution and taxonomy of Culicidae (Diptera) in the Sudan. Transactions of the Royal Entomological Society of London. 1945;95:1.
- 55. Lewis DJ. General observations on mosquitoes in relation to yellow fever in the Anglo-Egyptian Sudan. Bulletin of Entomological Research. 1947;37(4):543-566.
- Hassan E. Epidemiology and transmission of Lymphatic filariasis in Southern Sudan. M.Sc. Thesis, Department of Zoology, Faculty of Science, University of Khartoum; c2007.
- 57. McIntosh BM, Jupp PG, dos Santos I, Meenehan GM. Epidemics of West Nile and Sindbis viruses in South Africa with *Culex* (*Culex*) univittatus Theobald as vector. South African Journal of Science. 1976;72(10):295-300.
- 58. Cornel AJ, Jupp PG, Blackburn NK. Environmental temperature on the vector competence of *Culex Univitatus* (Diptera: Culicidae) for West Nile virus. Journal of Medical Entomology. 1993;30(2):449-456.
- 59. Barry RM, Roger SN, Marvin SG, Harry MS, Julius JL, Robert SL, *et al.* First field evidence for natural vertical transmission of West Nile Virus in *Culex Univitatus* complex mosquitoes from Rift Valley Province, Kenya.

- American Journal of Tropical Medicine and Hygiene. 2000;62(2):240-246.
- 60. McIntosh BM, Jupp PG, Dickinson DB, McGillivray GM, Sweetnam J. Ecological studies on Sindbis and West Nile viruses in South Africa. I. Viral activity as revealed by infection of mosquitoes and sentinel fowls. South African Journal of Medical Sciences. 1967;32:1.
- 61. El Hadi RA. The ecology and behaviour of *Culex* mosquitoes around Khartoum State with particular emphasis on their role in transmission of arboviruses. M.Sc. dissertation, University of Khartoum; c2010.
- 62. Digoutte JP, Peters CJ. General aspects of the 1987 Rift Valley fever epidemic in Mauritania. Research in Virology. 1989;140:27-30.
- 63. Diallo M, Lochouarn L, Ba K, Sall AA, Mondo M, Girault L, *et al.* First isolation of the Rift Valley fever virus from *Culex poicilipes* (Diptera: Culicidae) in nature. American Journal of Tropical Medicine and Hygiene. 2000;62:702-704.
- 64. Nabeth P, Kane Y, Abdalahi M, Diallo M, Ndiaye K, Ba K. Rift Valley fever outbreak in Mauritania in 1998: seroepidemiologic, virologic, entomologic, and zoologic investigation. Emerging Infectious Diseases. 2001;7:1052-1054.
- 65. Faye O, Diallo M, Diop D, Bezeid O, Bâ H, Niang M, *et al.* Rift Valley fever outbreak with East-Central African virus lineage in Mauritania, 2003. Emerging Infectious Diseases. 2007;13(7):1016-1023.
- 66. Tourre YM, Lacaux JP, Vignolles C, Ndione JA, Lafaye M. Mapping of zones potentially occupied by *Aedes vexans* and *Culex poicilipes* mosquitoes, the main vectors of Rift Valley fever in Senegal. Geospatial Health. 2008;3(1):69-79.
- 67. Bonne-Wepster J. *Culex bitaeniorhynchus* as vector of *Wuchereria bancrofti* in New Guinea. Documenta De Medicina Geographica Et Tropica. 1956;8(4):375-379.
- 68. Tanaka K. Studies on the pupal mosquitoes of Japan (11) Subgenera *Ocuieomyia* (stat. nov.) and *Sirivanakarnius* (nov.) of the genus *Culex*, with a key of pupal mosquitoes from Ogasawara-gunto (Diptera: Culicidae). Medical Entomology and Zoology. 2004;55(3):217-231.
- 69. Thongsripong P, Green A, Kittayapong P, Kapan D, Wilcox B, Bennett S. Mosquito vector diversity across habitats in Central Thailand endemic for dengue and other arthropod-borne diseases. PLOS Neglected Tropical Diseases. 2013;7(10)
- 70. Tyagi BK, Munirathinam A, Venkatesh A. A catalogue of Indian mosquitoes. International Journal of Mosquito Research. 2015;2(2):50-97.
- 71. Patel MC. An updated checklist of mosquito fauna of Andaman and Nicobar groups of islands with note on endemic mosquito fauna. International Journal of Mosquito Research. 2016;3(2):31-38.
- 72. Bhuyan PJ, Hiriyan J, Chandrasekaran P, Annadurai C. An annotated checklist of mosquito fauna with vector bionomics in Nilgiri Hills, Southern India. Journal of Evolution of Medical and Dental Sciences. 2013;2(11):1654-1665.
- 73. Darsie RF, Ward RA. Identification and geographical distribution of the mosquitoes of North America, North of Mexico. Gainesville, FL: University Press of Florida; 2005.
- 74. Turell MJ, Dohm DJ, Sardelis MR, O'guinn ML,

- Andreadis TG, Blow JA. An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. Journal of Medical Entomology. 2005;42:57-62.
- 75. Ali KM, Asha AV, Aneesh EM. Bioecology and vectorial capacity of *Aedes* mosquitoes (Diptera: Culicidae) in Irinjalakuda Municipality, Kerala, India in relation to disease transmission. International Journal of Current Research and Academic Review. 2014;2(4):43-49.
- 76. Ndiaye E, Fall G, Gaye A, Bob NS, Talla C, Diagne CT, et al. Vector competence of Aedes vexans (Meigen), Culex poicilipes (Theobald) and Cx. quinquefasciatus Say from Senegal for West and East African lineages of Rift Valley fever virus. Parasites and Vectors. 2016;9:94.
- 77. Fall AG, Diaïté A, Etter E, Bouyer J, Ndiaye TD, Konaté L. The mosquito *Aedes* (*Aedimorphus*) *vexans arabiensis* as a probable vector bridging the West Nile virus between birds and horses in Barkedji (Ferlo, Senegal). Medical and Veterinary Entomology. 2011;26:106-111.
- 78. El Hadi RA, Konozy EH, El Rayah E. Rift Valley fever virus (RVFv) dissemination inside mosquitoes and investigation of the influence of climate on mosquitoes abundance. Journal of Entomology and Zoology Studies. 2013;1(5):1-9.
- 79. Fontenille D, Toto JC. *Aedes (Stegomyia) albopictus* (Skuse), a potential new dengue vector in Southern Cameroon. Emerging Infectious Diseases. 2001;7(6):1066-1067.
- Khater EI, Sowilem MM, Sallam MF, Alahmed AM. Ecology and habitat characterization of mosquitoes in Saudi Arabia. Tropical Biomedicine. 2013;30(3):409-427.
- 81. Kamgang B, Ngoagouni C, Manirakiza A, Nakouné E, Paupy C, Kazanji M. Temporal patterns of abundance of *Aedes aegypti* and *Aedes albopictus* (Diptera: Culicidae) and mitochondrial DNA analysis of Ae. *albopictus* in the Central African Republic. PLoS Neglected Tropical Diseases. 2013;7(12)
- 82. Correia W, Varela I, Spencer H, Alves J, Duarte EH. Characterization of mosquito breeding sites in the Cape Verde islands with emphasis on major vectors. International Journal of Mosquito Research. 2015;2(3):192-199.
- 83. El-Rayah E. Mosquitoes of Sudan. Sudan Notes & Records. 2007;6:153-187.
- 84. Jackson N. Observations on the feeding habits of a predaceous mosquito larva, *Culex (Lutzia) tigripes* Grandpré and Charmoy (Diptera). Proceedings of the Royal Entomological Society of London. 1953;28:53-159.
- 85. Kbio KM, Markarian N, Kassis A, Nuwayri-Salti N. A two-year survey on mosquitoes of Lebanon. Parasite. 2005;12:229-235.
- 86. Toma L, Cipriani M, Coffredo M, Romi R, Lelli R. First report on entomological activities for the surveillance of West Nile disease in Italy. Veterinaria Italiana. 2008;44(3):499-512.
- 87. Milankov V, Petric D, Vujic A, Vapa L. Taxonomy, biology, genetic variability and medical importance of *Ochlerotatus caspius* (Pallas, 1771) and *O. dorsalis* (Meigen, 1830) (Diptera: Culicidae). Acta Entomologica Serbica. 2009:14(2):195-207.
- 88. Roiz D, Ruiz S, Soriguer R, Figuerola J. Landscape

- effects on the presence, abundance and diversity of mosquitoes in Mediterranean wetlands. PLoS ONE. 2015, 10(6).
- 89. Trari B, Dakki M, Harbach RE. An updated checklist of the Culicidae (Diptera) of Morocco, with notes on species of historical and current medical importance. Journal of Vector Ecology. 2017;42(1):94-104.
- 90. Clarkson MJ, Setzkorn C. The domestic mosquitoes of the Neston area of Cheshire, UK. European Mosquito Bulletin. 2011;29:122-128.
- 91. Medlock JM, Vaux AGC. Colonization of UK coastal realignment sites by mosquitoes: implications for design, management, and public health. Journal of Vector Ecology. 2013;38(1):53-62.
- 92. Lundström JO. Mosquito-borne viruses in Western Europe: a review. Journal of Vector Ecology. 1999;24:1-39.
- 93. Hubálek Z. European experience with the West Nile virus ecology and epidemiology: could it be relevant for the New World? Viral Immunology. 2000;13:415-426.
- 94. Blagrove MSC, Sherlock K, Chapman GE, Impoinvil DE, McCall PJ, Medlock JM, *et al.* Evaluation of the vector competence of a native UK mosquito *Ochlerotatus detritus* (*Aedes detritus*) for dengue, chikungunya and West Nile viruses. Parasites & Vectors. 2016;9:452.
- 95. Chapman GE, Archer D, Torr S, Solomon T, Baylis M. Potential vectors of equine arboviruses in the UK. Veterinary Record; c2017. DOI:10.1136/vr.103825.
- 96. Belo SMD, Calado MMP, de Almeida APG, de Pinho Mixao V, Ferreira CAC, Goncalves LAP, *et al.* First molecular identification of mosquito vectors of *Dirofilaria immitis* in continental Portugal. Parasites & Vectors. 2015;8:139.
- 97. Mohamed AH, Ali AM, Harbach RE, Reeves RG, Ibrahim KM, Mohmed MA. *Aedes* mosquitoes in the Republic of the Sudan, with dichotomous keys for the adult and larval stages. Journal of Natural History. 2017;51(9-10):513-529.