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Abstract 
Hibiscus cannabinus, often known as kenaf, is contain significant amount of bioactive compounds and 

acts as a natural antioxidant. The aim of this in silico investigation is to find out how the flower extract, 

Sulfite oxidase inhibits the mosquito (Anopheles darlingi) protein, pro-resilin, using 3D automated drug 

docking studies. In this methodology, we perform primary analysis on the amino acid sequences of pro-

resilin and sulphite oxidase using NCBI GenPept and HDock server for performing drug docking 

analysis. The overall results clearly elucidate that the intramolecular dynamic interaction between Sulfite 

oxidase and the motif regions of Pro-resilin is very effective. This results in the downregulation of the 

expression of Pro-resilin which has been shown in 3D form. At present, research on mosquito control is 

of prime focus at global level. Our in silico research investigation is a safe initiative to control 

mosquitoes using flower extract as it is devoid of side effects. 
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Introduction 
Since the late twentieth century, there has been a lot of research into the replacement of a 

disease vector or an agricultural pest with a more benign strain [1, 4]. At the moment, sterile 

insect methods and the development of transgenic mosquitoes with diminished Plasmodium 

competency are being applied in studies aimed at the management and replacement of 

Anopheles populations [5, 6]. However, given the stresses of shifting and altered habitats and 

surroundings, as well as influence imposed directly by humans through the application of 

insecticide and pesticides, replacement and genetic turnover events do occur naturally and may 

be very common. Microsatellites were used to detect such an occurrence in a recent, well-

documented case involving the agricultural pest Bemisia tabaci (silverleaf whitefly) in 

Queensland, Australia. The most numerous subpopulation of the silverleaf whitefly was 

virtually fully replaced by a significantly less numerous one within a 3-month period between 

2006 and 2007, while the causes of this replacement are unknown [10]. Aedes triseriatus was 

invaded and largely displaced in New Jersey over a 9-year period by Aedes albopictus and 

Aedes japonicus. Ae. albopictus and Ae. japonicus both had a doubling in abundance during 

this time, but Ae. triseriatus experienced a three-fold decline [11]. Ae. triseriatus is a known 

arboviral vector [12], but studies have shown that Ae. albopictus and Ae. japonicus are far more 

capable carriers of a variety of arboviruses, including chikungunya and dengue [13, 16. 

Additionally, between August 2008 and March 2010, species replacement was seen in 

anophelines in the Brazilian Amazon (Amazonas state).  

The catalytic molybdenum atom is positioned in the centre of a square-based pyramid in the 

Moco domain of SOX, where it coordinates five atomic ligands [17, 18, 19]. Sulphur atoms make 

up three of these ligands, and two of them come from the dithiolate moiety of the Moco 

scaffold. The SOX polypeptide chain's human Cys264, a highly conserved cysteine residue, 

provides the third sulphur [20]. The final two ligands are oxygen atoms, one of which is 

coordinated axially with the molybdenum atom and the other of which points in the direction 
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of the SOX active site. The latter is an example of the reactive 

oxoligand that is employed in the process of oxotransfer to 

create sulphate from sulfite [21]. The abstracted oxoligand is 

replaced by oxygen coordination of a water molecule during 

oxotransfer, which lowers the molybdenum atom's oxidation 

state from Mo (VI) to Mo (IV) [22, 23, 24, 25, 26, 27, 28]. The 

reductive half reaction of SOX is described by this. 

 

Methodology 

Protein sequence retrieval: The target protein sequences, 

ACU33027.1 of sulfite oxidase from Hibiscus cannabinus and 

XP_049540068.1 of pro-resilin from Anopheles darlingi were 

retrieved from NCBI GenPept database 26 

(https://www.ncbi.nlm.nih.gov/protein/). The 2D structure 

was converted into 3D structure using Discovery studio 

software in FASTA format in order to perform drug docking 

studies. 

 

Molecular Drug Docking: The selected mosquito protein 

sequence and the predicted 3D structure of Malic acid were 

subject to drug docking studies in order to find out the binding 

efficiency of Sulfite oxidase with Pro-resilin of Anopheles 

darlingi. The molecular drug docking server, HDOCK server 

27 (http://hdock.phys.hust.edu.cn/) was used for docking 

studies. 

 

Results and Discussion 

The selected mosquito sps, Anopheles darlingi has pro-resilin 

whose amino acid sequence has 162 a (XP_049540068.1) The 

extract from Hibiscus cannabinus contains Sulfite oxidase 

whose amino acid length is 393 a (ACU33027.1) retrieved 

from NCBI database in FASTA format. (Fig: 1 and 2) Except 

for yeasts, all eukaryotes have sulfite oxidase in their 

mitochondria. Through the conversion of sulfite to sulphate 

and the transmission of the generated electrons to the electron 

transport chain via cytochrome c, oxidative phosphorylation is 

able to make ATP. The sulphate is eliminated after this final 

stage of the metabolism of substances containing sulphur. 

Sulfite oxidase is a metallo-enzyme that uses a heme group 

(in the case of mammals) and a molybdopterin cofactor. It is a 

cytochrome b5 and a member of the molybdenum 

oxotransferase enzyme superfamily, along with DMSO 

reductase, xanthine oxidase, and nitrite reductase .28, 29, 30 

Elastomeric protein known as resilin is present in a variety of 

insects and other arthropods. It gives mechanically active 

organs and tissue a soft rubber-elasticity that, for instance, 

allows insects of many species to efficiently leap or rotate 

their wings. Torkel Weis-Fogh was the first to identify resilin 

in locust wing-hinges. The most effective elastic protein 

currently understood is resilin. Only 3% of the stored energy 

is wasted as heat, giving the isolated resilin from locust 

tendon a claimed 97% elastic efficiency [31].  

The target protein of Pro-resilin from Anopheles darlingi is 

bound by the chemical structure, which is based on internal 

electrostatic force. (Fig: 3) Homologous complexes with a 

sequence identity of less than 30% with the test cases were 

disregarded throughout the HDOCK server evaluation. The 

unbound structural sequences were used as input for receptor 

and ligand as well as the protein-protein docking process. It 

was successfully determined throughout the evaluation that 

the projected binding mode had an allowable precision or 

better in accordance with the CAPRI criteria. Our findings are 

consistent with earlier research that has been established [32, 32, 

33, 34, 35, 36, 37]. The larger negative value between sulphite 

oxidase and pro-resilin in our medication scores is 244.36 

kcal/mol (Table 1).  

Theoretically, a larger negative value denotes a good binding 

relationship between the medication and receptor. The 

binding interaction between pro-resilin and the Sulfite oxidase 

drug is seen in figure 4 and 5 at the hydrogen bonds. Using 

Discovery Studio Software, the results show the whole 

interaction together with the labels for the respective amino 

acids in a 3D format. The interaction between the acceptor 

and donor, specifically how sulphite oxidase suppresses the 

functional component of pro-resilin, is clearly seen in 

The results of the molecular dynamic study revealed that the 

total length of the protein, pro-resilin of Anopheles darlingi 

was 162 aa (Insect cuticle protein –binding domain range (79-

150). Within this length, various functional domains, such as, 

Moybdenum cofactor oxidoreductase, dimerisation (259-384) 

IPR005066 38, 49 and Oxidoreductase, molybdopterin-binding 

domain (53-234) IPR000572 [40] are present. The binding 

interaction of Sulfite oxidase with pro-resilin takes place at 

the H-bond interacting amino acid positions  

(LYS:108,TRP:254,ARG:384,LYS:100,ARG:109,ARG:120,

GLU:148,TYP:112,GLU:148,ASP:106.ASP:274,THR:104,T

RP:117,SER:8,LYS:162,ILE:252.).  

All of the studies show unequivocally that Sulfite oxidase 

binds to the pro-resilin's functional region, thereby, inhibiting 

it. Works similar to this have already been proved by us 

previously [41]. 

 
Table 1: Computational Drug docking summary of drug and 

receptor with the binding score along with units 
 

Drug 

Receptor 
ACU33027.1 sulfite oxidase 

[Hibiscus cannabinus] 

XP_049540068.1 pro-resilin 

[Anopheles darlingi] 
-244.36 kcal/mol 

 

Figures 

 
>ACU33027.1 sulfite oxidase [Hibiscus cannabinus] 

MPGIKGPSDYSQEPPRHPCLQINSKEPFNAEPPRSALVSSYVTRVDLFYKRNHGPIPVVDDIERYCFDIS 

GLIQTPKKLYMRDVRMLPKYNVTAILQCAGNRRTAMSKTRKVRGVGWDVSAIGNAVWGGAKLADVLELVG 

IPKLTSRTQSGGKHVEFVSIDKCKEENGGPYKASIPLIQATNPEADVLLAYEMNGEPLNRDHGYPLRVIV 

PGVIGARSVKWLDSINILAEECQGSFMQKDYKMFPPSVDWNINWSTRRPQMDFPVQSVICSLEDVQSIK 

PGKITIGYAASGGGRGIERVDVSIDGGKTWLEASRSQKTGIPYISDHESSDKWAWVLFEITVDIPHSTE 

IVAKAVDSAANVQPENVQDIWNLRGILNTSWRVQIRVGHSNM 
 

Fig 1: Amino acid sequence of Sulfite oxidase of Hibiscus cannabinus. 
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>XP_049540068.1 pro-resilin [Anopheles darlingi] 

MMKFVVLAVCLCVVVIVDQTLAQNNQYLPPDKGYAYDKPNQPFPSSPQPQPRPPQPTPGRPAPSYGPPPA 

TDDHHHEPGMPFDFQYNVNDIETQNDYSHKAVSDGDVTRGEYRVQLPDGRTQIVRYTADWKNGYNAEVSY 

EGEAKYPEGPGQGGANAGGYKY 
 

Fig 2: Amino acid sequence of Pro-resilin of Anopheles darlingi 
 

 
 

Fig 3: 3D Molecular docking interactions between Sulfite oxidase and Pro-resilin using HDOCK server 

 

 
 

Fig 4: 3D Molecular docking interactions between Sulfite oxidase 

and Pro-resilin using Discovery Studio software 
 

 
 

Fig 5: 3D Molecular docking interactions between Sulfite oxidase 

and Pro-resilin using Discovery studio software (Amino acids 

interacting at H-bond : LYS: 108, TRP:254, ARG:384, LYS:100, 

ARG:109, ARG:120, GLU:148, TYP:112, GLU:148, 

ASP:106.ASP:274, THR:104, TRP:117, SER:8, LYS:162, ILE:252) 
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Conclusion 

In the Amazon area, Anopheles darlingi is a significant 

malaria vector. The pro-resilin of Anopheles darlingi directly 

attaches to the chosen chemical molecule, Sulfite oxidase, as 

demonstrated by this scientific inquiry. All eukaryotes have 

sulfite oxidase, an enzyme, in their mitochondria. The goal of 

the current study was to use naturally occurring substances, 

such as the non-toxic Sulfite oxidase, to suppress mosquito 

populations. The body of research unequivocally 

demonstrates that Sulfite oxidase directly binds to the 

functional portion of Anopheles darlingi pro-resilin, down 

regulating it. Hence, Sulfite oxidase may be employed as an 

effective mosquito-controlling agent.  
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