Mosquito (Diptera: Culicidae) diversity and malaria prevalence in Kovié, prefecture of Zio, Togo

Yao Apéité Roland Toglo, Koffi Mensah Ahadjji-Dabla, Edoh Koffi, Georges Yawo Apétogbo and Guillaume Koffivi Ketoh

DOI: https://doi.org/10.22271/23487941.2021.v8.i5a.557

Abstract

Vector-borne diseases are infectious diseases transmitted by vectors which are mostly hematophagous or non-hematophagous arthropods that transmit pathogens, from one vertebrate to the other \(^1\). These arthropods are mainly insects and mites that transmit parasitic diseases such as malaria, Chagas disease, plague, dengue, chikungunya, Rift Valley fever, and West Nile disease. There is a diversity of vector species in Africa. These species can redistribute in new habitats created by microclimates which are generated by climate change \(^2\). This redistribution could lead to a new disease mapping. The most common vector-borne disease is malaria, which is caused by a blood parasite of the genus *Plasmodium* transmitted by mosquitoes of *Anopheles* genus. Globally, in 2019, malaria cases and deaths were approximately 229 million and 409,000, respectively \(^3\). Five *Plasmodium* species including *Plasmodium falciparum*, *P. malariae*, *P. vivax*, *P. ovale*, and *P. knowlesi* are present on all the continents. In 2014, reports indicated that in mosquito-infested areas, approximately 120 million people were infected with filaria, 50 million with arboviruses, and 198 million with plasmodium \(^4,5\). In many African countries, the food self-sufficiency ambition led to the development of hydro-agriculture including irrigated crops, especially rice \(^6\). Togo has many irrigated areas of which the most important is the irrigated rice-growing area of the Valley of Zio \(^7\). This zone includes four villages: Mission-Tové, Kovié, Assomé, and Ziovonou with a total surface area of 660 ha \(^8\). However, only 373 ha are developed for rice production which favors mosquito proliferation. This study is to investigate mosquito diversity and the diseases transmitted in rice-growing environment. The specific objectives are to list the different mosquito of medical importance, to identify malaria vectors, and to establish a link between the presence of malaria vectors and malaria prevalence.

Keywords: Kovié, mosquito fauna, PCR, malaria prevalence

Introduction

Vector-borne diseases are infectious diseases transmitted by vectors which are mostly hematophagous or non-hematophagous arthropods that transmit pathogens, from one vertebrate to the other \(^1\). These arthropods are mainly insects and mites that transmit parasitic diseases such as malaria, Chagas disease, plague, dengue, chikungunya, Rift Valley fever, and West Nile disease. There is a diversity of vector species in Africa. These species can redistribute in new habitats created by microclimates which are generated by climate change \(^2\). This redistribution could lead to a new disease mapping. The most common vector-borne disease is malaria, which is caused by a blood parasite of the genus *Plasmodium* transmitted by mosquitoes of *Anopheles* genus. Globally, in 2019, malaria cases and deaths were approximately 229 million and 409,000, respectively \(^3\). Five *Plasmodium* species including *Plasmodium falciparum*, *P. malariae*, *P. vivax*, *P. ovale*, and *P. knowlesi* are present on all the continents. In 2014, reports indicated that in mosquito-infested areas, approximately 120 million people were infected with filaria, 50 million with arboviruses, and 198 million with plasmodium \(^4,5\). In many African countries, the food self-sufficiency ambition led to the development of hydro-agriculture including irrigated crops, especially rice \(^6\). Togo has many irrigated areas of which the most important is the irrigated rice-growing area of the Valley of Zio \(^7\). This zone includes four villages: Mission-Tové, Kovié, Assomé, and Ziovonou with a total surface area of 660 ha \(^8\). However, only 373 ha are developed for rice production which favors mosquito proliferation. This study is to investigate mosquito diversity and the diseases transmitted in rice-growing environment. The specific objectives are to list the different mosquito of medical importance, to identify malaria vectors, and to establish a link between the presence of malaria vectors and malaria prevalence.
Materials and Methods

Study site
The study was conducted in four villages of Kovié (Fig. 1), located at 30 km northwest of Lomé in the prefecture of Zio. Kovié (06°34′38″N – 01°11′47″E) is a peri-urban area located in the valley of Zio in Togo. Geographically, this area presents a favorable ecosystem for the development of insect vector species such as *Anopheles gambiae* s.l. and *Aedes* sp. Kovié enjoys a tropical climate with two dry seasons and two rainy seasons. The main dry season is from December to March and the short dry season from July to August. The main rainy season runs from late March to June and the short rainy season from mid-September to late October [8]. Irrigated rice cultivation is the main activity in this area [9].

![Map of the study site](image)

Mosquito collection and identification
Pre-imaginal mosquitoes were collected in gutters, rice fields, car tire pits, containers, and puddles in the neighborhoods of Kovié and especially in the rice-growing areas. Larvae and pupae were collected by dipping technique [10] in positive breeding sites. Collection was carried out twice a month for 4 months (June to September 2020). The larvae and pupae collected were sorted by genus and reared (T = 27±2°C, RH = 80±5%) to adulthood using the method of Desfontaine et al. [11] at the insectary of the Laboratory of Ecology and Ecotoxicology, University of Lomé. Adult mosquitoes were also collected using the methods of Human Landing Catch and Spray-catch, from September 14 to 17, 2020 in habitations where people sleep under mosquito nets in the study areas. Samples were then conditioned in Eppendorf tubes containing silicagel and kept at −4 °C and identified using the keys of Gillies & De Meillon [12], Gillies & Coetzee [13] for Anophelinae, and Edwards [14] for Culicinae.

Sibling species of *Anopheles gambiae* s.l. were identified by Polymerase Chain Reaction-Restriction according to the protocol of Scott et al. [14]. DNA extraction was performed using the method of Collins et al. [16], resuspended in sterile deionized water and kept at −80 °C. The following steps were undertaken to run the PCR according to the protocol of Favia et al. [17]: an initial step of 10 min at 94 °C was followed by 25 cycles with denaturation at 94 °C for 30 s, annealing at 63 °C for 30 s, and extension at 72 °C for 30 s; the products were extended for 7 min at 72 °C, after the final cycle.

Epidemiological data collection
Epidemiological data were collected at the health center of Kovié. To identify the vector-borne diseases which were the primary cause of consultation in the local population, retrospective data from 2018 to 2020 were considered. We focused only on the data of thick blood smears results as reported in the medical registry of the health center.

Statistical Analysis
The prevalence rate was calculated as the number of positive blood smears over the total number of blood smears. Data were processed with Excel 2010 (Microsoft Corp) spreadsheet and the analyses of variances (ANOVA) were performed with the PAST software version 3.23. The significance level was 5%.

Results

Mosquito diversity
A total of 1,038 mosquitoes belonging to two sub-families: Anophelinae, 78% and Culicinae, 22% (Fig. 2) were collected at Kovié. The two subfamilies are divided into four genera: *Anopheles*, *Culex*, *Aedes*, and *Mansonia* (Fig. 3). Only *Mansonia* was collected at adult stage and *Aedes* was at larval
stage. *Anopheles* and *Culex* were caught at both larval and adult stages.

![Distribution of mosquito sub-families identified](image1)

![Distribution of mosquito genera identified](image2)

Culicinae sub-family (5 species) was more species-rich than Anophelinae (1 species). *Culex, Aedes, and Anopheles* were the main genera recorded. (Table 1). The *Anopheles* (n = 813, 78.32%) of Kovié was the most represented with the main species being *An. coluzzii*, followed by *Culex* (n = 172, 17%), *Mansonia* and *Aedes* which were less represented.

Table 1: Mosquito species composition at Kovié

<table>
<thead>
<tr>
<th>Sub-families</th>
<th>Genera</th>
<th>Species</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culicinae</td>
<td>Aedes</td>
<td>Ae. aegypti</td>
<td>49 (4.7)</td>
</tr>
<tr>
<td></td>
<td>Culex</td>
<td>Cx. pipiens</td>
<td>45 (4.33)</td>
</tr>
<tr>
<td></td>
<td>Culex</td>
<td>Cx. sp</td>
<td>33 (3.2)</td>
</tr>
<tr>
<td></td>
<td>Culex</td>
<td>Cx. poicilipes</td>
<td>94 (9.05)</td>
</tr>
<tr>
<td></td>
<td>Mansonia</td>
<td>Ma. uniformis</td>
<td>4 (0.4)</td>
</tr>
<tr>
<td>Anophelinae</td>
<td>Anopheles</td>
<td>An. coluzzii</td>
<td>813 (78.32)</td>
</tr>
</tbody>
</table>

Resting behavior

A total of 483 female mosquitoes from 5 different species were caught in 20 bedrooms (Table 2). The average resting density was 4.87 females per bedroom per day (FBD). The highest resting density was observed in *An. coluzzii* (20.6 FBD) and followed distantly by *Cx. Pipiens* (2.25 FBD). Low resting densities were observed in *Cx. poicilipes* (0.95 FBD), *Culex sp* (0.15 FBD), and *Ma. uniformis* (0.4 FBD) (Table 2).

Table 2: Resting density of mosquito species at Kovié

<table>
<thead>
<tr>
<th>Species</th>
<th>Number collected</th>
<th>Resting density (FBD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cx. pipiens</td>
<td>45</td>
<td>2.25</td>
</tr>
<tr>
<td>Culex sp</td>
<td>3</td>
<td>0.15</td>
</tr>
<tr>
<td>Cx. poicilipes</td>
<td>19</td>
<td>0.95</td>
</tr>
<tr>
<td>Ma. uniformis</td>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>An. coluzzii</td>
<td>412</td>
<td>20.6</td>
</tr>
<tr>
<td>Mean</td>
<td>96.6</td>
<td>4.87</td>
</tr>
</tbody>
</table>

Epidemiological survey

Information relating to medical consultations for vector-borne diseases were obtained at the Kovié Health Center. Information was exclusively about malaria (Table 3). The variations in positive thick blood smear (TBS) by year and age group are shown in Figure 3. Results showed that malaria cases were higher in ≥5 years: 579 cases in 2018, 594 cases in 2019, and 165 cases in 2020. However, in <5 years and PW, the TBS revealed that the highest number of malaria infections was recorded in 2019. Analyses showed a significant difference (F= 9.88623; ddf = 2; p = 0.02831) between the values collected in <5 years, ≥5 years, and PW per year. Malaria prevalence by age group is shown in Table 3.

Table 3: Malaria prevalence between 2018 and 2020

<table>
<thead>
<tr>
<th>Years</th>
<th>Age groups</th>
<th>Positive TBS</th>
<th>Negative TBS</th>
<th>Total</th>
<th>Prevalence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><5 years</td>
<td>100</td>
<td>51</td>
<td>151</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>≥5 years</td>
<td>579</td>
<td>235</td>
<td>814</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>PW</td>
<td>81</td>
<td>53</td>
<td>134</td>
<td>60</td>
</tr>
<tr>
<td>2019</td>
<td>≥5 years</td>
<td>594</td>
<td>248</td>
<td>842</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>PW</td>
<td>54</td>
<td>114</td>
<td>168</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td><5 years</td>
<td>26</td>
<td>39</td>
<td>65</td>
<td>40</td>
</tr>
<tr>
<td>2020</td>
<td>≥5 years</td>
<td>165</td>
<td>108</td>
<td>273</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>PW</td>
<td>19</td>
<td>30</td>
<td>49</td>
<td>39</td>
</tr>
</tbody>
</table>

PW: pregnant women, TBS: thick blood smear

Discussion

In this study, mosquito fauna in Kovié is predominantly comprised of *Anopheles*, followed by *Culex*. Similar trends were reported by Djegbe et al. [18] in Benin and Adjé et al. [19] in Côte d’Ivoire. *Aedes* and *Mansonia* were less represented. The presence of mosquitoes is aggravated by irrigated rice cultivation related breeding sites. Indeed, Kovié is a peri-urban locality located in a lowland. Rice cultivation in lowland has created a very favorable ecosystem for the proliferation of *An. gambiae s.l.*. Several studies have shown the impact of irrigated rice cultivation on the proliferation of *Anopheles mosquitoes*, especially *An. gambiae* [20,21]. The diversity of mosquito fauna at Kovié is very low as indicated by Simpson's diversity index value (Ď) = 0.4. This low index could be explained by the short period of collection. Despite such a low index, all the genera of medical importance (*Anopheles, Culex, and Aedes*) are represented; this represents a threat to the health of the local population. The presence of *Culex* in the breeding sites could be explained by the presence of ions and organic compounds in the breeding sites because of the use of organic fertilizers in the rice fields. It has been shown that *Culex* prefers breeding sites rich in organic compounds and adapts to polluted environments with high ionization [22-24]. In addition, *An. coluzzii* could adapt to organic-rich and highly mineralized breeding sites [25]; this
could explain the proliferation of this species in Kovié. The absence of *Mansonia* mosquitoes during the larval surveys, although collected during the SC is probably related to the Dipping method \(^{10}\) used in collecting the larvae. In fact, this collection method is not appropriate for the collection of *Mansonia* larvae which tend to cling to plants. Hence the need to combine adult collection methods to increase the probability of collection. The high number of female mosquitoes recorded is an important factor in the epidemiology and transmission of mosquito-borne diseases given their role as vectors. The fact that *An. coluzzii*, *Cx. poicilipes*, *Cx. ppienis*, and *Ma. uniformis* were collected in houses explains the anthropophilic behavior of these species. *Anopheles coluzzii* is highly anthropophilic as reported by Dossou-Yovo \(^{26}\). Most of the houses in Kovié have rooms with ventilation openings, which contribute to increasing the number of mosquitoes entering rooms, thus increases the likelihood of infectious bites. In Kovié, malaria is the main cause of consultation, especially among children <5 years, considered as vulnerable population together with PW. The National Malaria Control Program (NMCP) reported that malaria is the leading cause of mortality in pediatric services \(^{27}\). In addition, 2020 data indicated a slightly low prevalence rate in PW and <5 years; this could be explained by the special attention the local community gives to malaria prevention by avoiding mosquito bites through an effective use of mosquito nets, the main vector control tool adopted by the NMCP in the country. High prevalence of malaria (especially in 2018 and 2019) at Kovié could be attributed to the high number of *An. coluzzii* – the only representative sibling of *Anopheles gambiae s.l.* – recorded in the area and to the reduction of LLINs effectiveness. Indeed, Diuk-Wasser et al. \(^{28}\) reported that there is a quadratic relationship between mosquito abundance and malaria transmission. *Anopheles coluzzii* was reported in 2013 and 2016 by Amoudi et al. \(^{29}\) in our study area. However, two other members of the complex including *An. gambiae* and *An. arabiensis*, the main malaria vectors, have been recently reported in Togo \(^{29,31}\).

Conclusion

Mosquitoes collected at Kovié were predominantly represented by *Anopheles coluzzii*. Data from the health center showed that malaria is the main cause of consultation, especially among children <5 years and PW. Though, malaria prevalence was slightly low in 2020, it was high in 2018 and 2019.

Acknowledgements

We would like to thank the Management as well as staff of Kovié Health Center. We also thank the people of the locality who kindly accepted that mosquitoes be collected in their rooms.

References

7. FAO. La démarche de qualité liée à l’origine du riz de de Kovié, Togo 2012, 26.

