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Abstract 
RNA interference is a post-transcriptional sequence selective gene control mechanism. Antiviral RNA 
interference (RNAi) pathway is one of the most momentous constituents of the insect innate immune system 
that can stymie versatile range of RNA virus like flavivirus. It has been demonstrated that RNA production 
by alphavirus replication is higher in proportion compared to flavivirus replication in mosquito cells. Studies 
demonstrated that infection by virus from Togaviridae and Bunyaviridae family of arbovirus to mosquito 
cells causes defect in RNAi response in-vitro but interestingly, it has also been stated that Dengue virus 
(DENV) could be actively inhibited by RNA interference (RNAi). This article is an endeavor to review the 
perspectives of the functional significance of antiviral RNA interference as a potent agent of controlling 
dengue infection in the vector. 
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1. Introduction 
Mosquitoes play a significant role in the transmission of most human diseases than any other 
group of arthropods [1]. Mosquito-borne viral diseases are the most important emerging and re-
emerging communicable diseases the world facing today at the beginning of the 21stcentury [2]. 
Mosquito borne diseases become a significant public health problem in the present situation it has 
been estimated that 2.5 billion people are inhabitants of dengue endemic areas with the daily risk 
of infection [3]. Southeast Asia harbors the greatest amount of dengue virus genetic diversity, 
suggesting it act as a viral ‘source’ population [4].   The dengue virus occurs as four antigenically 
distinct serotypes (DEN 1, 2, 3 and 4), that have emerged or re-emerged throughout the world 
since the 17th Century [5]. Current estimates of between 50 and 100 million cases of dengue fever 
per annum worldwide are reported. Of these cases 5, 00, 000 developed into severe forms of the 
disease such as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) [6]. Dengue 
virus is a single stranded virus with positive RNA belonging to the family Flaviviridae, genus 
Flavivirus [7]. The Dengue virus transmission has increased dramatically worldwide since 1970 
along with the increase in the virulence and disease severity that has been attributed to the 
Southeast Asian Genotypes of dengue virus (DEN-2 and DEN-3) [8].Aedes mosquito is susceptible 
to DEN virus [9]. Albeit Aedes aegypti and Aedes albopictus transmit DENV to human [10] but 
Aedes aegypti plays an important role in Dengue virus transmission [9]. Medically important 
arthropods like mosquitoes contain a range of versatile physiological mechanism to combat with 
viral infections and transmit the mosquito borne dengue virus to humans. RNA interference is a 
post-transcriptional sequence selective gene control mechanism [11, 12] and causes the elimination 
of virus infection [13]. In insects, RNA interference (RNAi) mechanism is considered as a major 
antiviral defense mechanism [14, 15, 16, 17, 18, 19]. In order to transmit into a suitable host, arbovirus 
like dengue must escape this anti-viral defense [20]. Interestingly, it has been reported that DEN 
virus could be actively inhibited by RNA interference (RNAi) [21, 22]. Additionally, researchers 
considered RNAi mechanism as a convincing method for treatment of flavivirus infection and to 
control the transmission of flavivirus by the vector [23, 24]. This article is an endeavor to review the 
perspectives of the functional significance of antiviral RNA interference as a potent agent of 
controlling dengue infection in the vector. 
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2. Diversity of antiviral RNAi mechanism 
RNA interference is a post-transcriptional sequence 
selective gene control mechanism [11, 12]. The antiviral 
defense property of RNAi mechanism was first reported 
from plant [25] and from the nematode Caenorhabditis 
elegans [26, 27, 28]. But the RNA-dependent silencing of viral 
replication in insects was revealed by using sequences of 
recombinant SINV-expressing Dengue Virus 2 (DENV2). 
Interestingly, the infected mosquitoes with this recombinant 
SINV were found resistant to wild-type DEN2 virus 
infection through an RNA dependent mechanism [29, 30, 31]. 
The antiviral RNAi response has been shown by Drosophila 
[15, 17, 18, 19] and mosquitoes [14, 16,32, 33, 34]. Additionally, the 
significant RNAi mechanism also functions in various 
insects which might exhibit antiviral defense response 
(Table. 1). 
RNAi or RNA silencing pathway comprises of a pool of ~ 
21 to 30 nucleotides long and small RNAs, which are 
divided into three major classes: small interfering RNA 
(siRNA), microRNA (miRNA) and PIWI-interacting RNA 
(piRNA) [12]. 
 

Table 1: List of insects that exert RNAi response in vivo after 
administration of exogenous dsRNA by intra-hemocoelic injection 

at the larval or adult stages  
[49]. 

 

Insects with their orders 
Silencing 

occurs 
In 

Reference 

Coleoptera 

Monochamus 
alternatus 

Epidermis 35 

Sitophilus spp. 
Bacteriome 

tissue 
36 

Tribolium 
castaneum 

Progeny 37 

Diptera 

Aedes spp. Fat body 38 
Anopheles 
gambiae 

Fat body 39 

Armigeres 
subalbatus 

Hemocytes 40 

Culex pipiens Systemic 41 
Drosophila 

melanogaster 
Central nervous 

system 
42 

Hymenoptera 
Apis mellifera Fat body 43 

Nasonia 
vitripennis 

Progeny 44 

Lepidoptera 
Bombyx mori Silk gland 45 
Helicoverpa 

armigera 
Midgut 46 

Orthoptera 
Locusta 

migratoria 
Progeny 47 

Schistocerca spp. Eye 48 

 
2.1 siRNA based RNAi 
There are two subclasses of siRNA, which have been 
demonstrated on the basis of dsRNA origin, endo-siRNA 
and vsiRNA. The production of the endo-siRNA occurs 
from genome encoded inverted repeats of antisense 
transcripts from several loci where as vsiRNA or virus  

derived siRNA is produced by viral (RNA or DNA virus) 
genome [49]. However, vsiRNA has a significant role in the 
antiviral defense of insects [50]. The incorporation of dsRNA 
into the cytoplasm is the inaugural step of the RNAi 
mechanism as it stimulates to start the series of reactions of 
RNAi [16, 22, 29, 30, 31, 32, 34, 51, 52]. The dsRNA is then cut by 
dsRNA specific endonuclease called Dicer enzyme or 
DICER which is an RNAse III family protein and results in 
the generation of a pool of ~21 to 23 base pairs long and 
small interfering RNAs or siRNAs [53, 54, 55] which are 
accompanied by Argonaute protein (Ago 2 Protein) that 
stimulates RNA-Induced Silencing Complex (RISC) [56, 57, 

58]. The RISC unwinds the siRNA and then the activated 
RISC uses one strand of siRNA as a RISC targeting co-
factor. Thereafter, the RISC associated siRNA binds with a 
complementary target mRNA and produces a single-site 
cleavage on the target mRNA by its endonuclease activity 
[17, 59, 60, 61]. This results in the destabilization and 
degradation of mRNA [62]. 

 
2.2 miRNA based RNAi 
miRNA causes the regulation of several cellular functions 
such as differentiation, development and metabolic 
homeostasis. Unlike the siRNA, the miRNA is present in 
both vertebrates and invertebrates [12]. RNAi mechanism 
involves the formation of ~22-23 nucleotide long 
microRNAs or miRNAs produced from the single arm of 
imperfect RNA hairpins which are ~80 nucleotides in length 
situated within polymerase II (pol II) -derived transcripts 
called primary miRNA or pre-miRNA[63,64] and results in 
repression of protein synthesis [21,65,66] . Pre-miRNA are stem 
loops which has 32 base pair imperfect stem and more than 
10 nucleotides containing terminal loop that is cleaved by an 
RNase III enzyme Drosha in association with its cofactor 
DGCR8/Pasha [67, 68,69]. This results in the formation of a 2 
nucleotide 3’ overhang in pre-miRNA which is identified by 
Exportin 5 that helps in the transfer of pre-miRNA to the 
cytoplasm [70, 71]. Interestingly, in the cytoplasm, Dicer 
enzyme of RNA III family endonuclease also recognizes the 
2 nucleotide 3’ overhang of pre-miRNA in association with 
its cofactor. Then Dicer/TRBP complex bind to the base of 
pre-miRNA which is followed by the cleavage to release the 
terminal loop, forming a 20 base pair RNA duplex that is 
flanked by 2 nucleotide 3’ overhangs [72]. After that the 
RNA strand which is quite loosely base paired with 5’ end 
in association with dsRNA-binding protein R3D1 engage 
with the Argonaute-1 (Ago1) -containing RNA-induced 
silencing complex (RISC) [57, 73] and causes the formation of 
mature miRNA [74, 75]. Then the miRNA helps in guiding the 
RISC to a complementary target site of mRNAs and 
facilitate inhibition of protein synthesis of those mRNAs [76, 

77]. A recent study revealed that Ars2 and the nuclear 
proteins CBP20 and CBP80 are components of the small 
RNA pathways establishing a link between siRNA and 
miRNA pathways [78]. (Figure: 1) 
 
 



 

 

~ 76 ~ 

International Journal of Mosquito Research                                                                                                                                                Volume 1 Issue 3 (2014)

 
2.3 piRNA based RNAi 
Although the PIWI pathway of RNAi is less understood [20], 
it has been reported that it also has a significant role in the 
antiviral defense of mosquitoes [79]. Additionally, the 
presence of viral piRNAs in mosquitoes has been suggested 
by several researchers [20, 80, 81]. In PIWI pathway ~24-30 
nucleotides length piRNA are produced by a mechanism 
which is independent of the involvement of Dicer [82].It has 
been thought that the piRNAs are processed from single 
stranded primary transcripts [20, 83]. The characteristic feature 
which makes this piRNA unique involves strand biasness 
i.e., many of the reads match against one viral genome 

strand [84] and has strong nucleotide biasness [85].It has been 
reported that upon viral infection in the C6/36 cell line of 
Aedes albopictus, primary and secondary piRNA were 
produced [81]. 
 
3. Principal components of siRNAi: The key regulator of 
antiviral defense mechanism in insects 
The siRNA pathway of RNAi is considered as the key 
regulator of antiviral defense in insects. Dcr-2 and Ago2 
containing RISC are the two major components of the 
siRNA pathway which play significant role in antiviral 
defense [49]. (Figure: 2) 

 

 
3.1 Dicer-2  
The dsRNA after viral infection originates from viral 
genome or as a replication intermediate [49]. The Dicer-2 
with the help of Loquacious, act to process the dsRNA to 
produce siRNA [86]. The structural characteristics of Dcr-2 
from N-terminus to C-terminus end involves: a domain of 

the DExH-box; two RNase III domains which exhibit dicing 
of dsRNA and a binding domain with dsRNA [87]. The 
various functional aspects of Dcr-2 in antiviral defense 
mechanism include the dicing up or breakdown of viral 
dsRNA of its RNase III activity [88], production of siRNA by 
the cleavage of viral dsRNA which is necessary for the 
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development of active RISC complex as a component of 
RNAi and finally involvement in the regulation of some 
antiviral genes like vago [54].  
 
3.2 RNA-induced silencing complex or RISC 
RISC is considered as a “ribonucleoproteic complex” [49] 
which contains various functional elements like siRNA, 
Ago2 [89], dFXR (Drosophila ortholog of fragile X mental 
retardation protein, [90]), vig (vasa intronic gene, [90]). 
Additionally, there are some constituents which promote 
siRISC assembly or activation [49] involving aubergine [91], 
C3PO [92] or Hsp90 [93]. After cleavage of viral dsRNA by 
Dicer-2 the produced siRNAs are shifted to siRISC in an 
asymmetric way by the Dicer-2 [75, 94] in association with 
R2D2 [56, 95]. After loading of siRNA into siRISC, the 
passenger strand of double stranded siRNA is then cleaved 
by Ago2 [96, 97]. Thereafter the resulting active siRISC 
complex searches for target viral RNAs and degrades them 
in a sequence specific manner [98]. 
 
4. Defensive strategies of Virus against antiviral RNAi 
Most RNA virus produce dsRNA as a byproduct of 
replication .This dsRNA after the invasion of virus acts as a 
signal that triggers the RNAi [62]. It is thought to happen in 
between the viral replication and viral RNA uncoating [99]. 
However, it has been stated that insect viruses by the 
production of specific proteins called Suppressors of RNA 
Silencing (SRS) or Viral Suppressors of RNAi (VSR) could 
also repress the antiviral RNAi response of insects [49,100, 101, 

102]. The SRS or VSR protein of virus generally binds to the 
dsDNA and prevents the Dicer mediated processing of 
dsDNA after invasion [103]. But in contrast, none of the 
mature dengue viral proteins could repress the mechanism 
of RNAi [101]. Albeit VSR is found in insect virus like 
Cricket Paralysis virus (dsDNA), Flock House Virus (FHV) 
but VSR that works during the infection of mosquito for any 
arbovirus has not been found yet [101, 104, 105].  
 
5. Conclusion 
Antiviral RNA interference (RNAi) pathway is one of the 
most momentous constituents of insects innate immune 
system that can stymie versatile range of RNA virus like 
flavivirus [34, 106] whereas Toll and JAK-STAT [107] pathways 
have also a significant contribution in flavivirus infection 
control within the mosquito body [108]. It has been reported 
that antimicrobial pathways like Toll and Imd play 
significant antiviral role in Aedes aegypti [7]. Moreover, the 
study on silencing the RNAs of dcr2, ago2 and r2d2 genes 
confirmed the role RNAi in facilitating virus resistance in 
mosquito vectors [106]. It has been demonstrated that 
restraining of infectious virus production and dissemination 
in vector mosquitoes require functional Dcr2, R2D2 and 
Ago2. [14, 16, 34,109]. In this context, it has been reported that 
the RNAi mechanism plays a significant antiviral function 
in mosquitoes [14,16,32,33,34]. Arboviral diseases emerged as a 
serious public health related problem in the present days [62]. 
Dengue seems to be the most prevalent disease, causing 
significant morbidity and mortality among humans 
worldwide, particularly in countries situated in the tropics. 

Dengue incidence has increased in recent decades with 
about two-fifths of the world population estimated to be at 
risk. The expeditious growth of dengue fever as a global 
pandemic exacerbated the manifestations of the disease 
accompanied by Dengue Hemorrhagic Fever (DHF) and 
Dengue Shock Syndrome (DSS) [110]. Interestingly, it has 
been demonstrated that RNA production by alphavirus 
replication is higher in proportion when compared to 
flavivirus replication in mosquito cells [106]. This is probably 
caused by either difference in RNAi machinery accessibility 
to dsRNA of the virus during replication or availability of 
abundant Dcr2 substrate as a consequence of rapid viral 
replication to higher titers of mosquito cells infected by 
alphavirus [22,111] or because of the differences in RNAi 
evasion capability of alphavirus and flavivirus [106]. Studies 
demonstrated that infection by virus from Togaviridae and 
Bunyaviridae family of arboviruses to mosquito cells causes 
defect in RNAi response  in-vitro [106] but studies also 
suggested that DEN virus could be actively inhibited by 
RNA interference (RNAi)  [21, 22]. It has been revealed that 
genes of both siRNA and miRNA pathway undergo 
diversifying selection which might cause possible 
concurrence of small RNA pathways [106]. Therefore RNAi 
may act as an efficient mechanism to restrict the Dengue. 
Additionally, the abundance of piRNA in gonads of insect 
vectors suggests the plausible role of piRNA pathway of 
RNAi in the restriction of the vertical transmission of 
arboviruses [84]. Thus, this could probably provide a 
satisfactory explanation in favor of the severity of Dengue 
infection. The significant development of several virulent 
strains due to high rate of mutation in the RNA genome of 
the RNA virus like Dengue [112, 113] may be an adaptive 
strategy of this virus that enhances its fitness to survive, 
exist, and propagate in the environment by avoiding the 
RNAi mechanism of mosquitoes. However, researchers 
reiterated that RNAi response resulted in DENV2 resistance 
in mosquitoes [114]. It has been demonstrated that 
constitutive expression of plasmid containing 500 base pairs 
inverted repeat sequence derived from DENV2 genome 
cause complete and heritable resistance to infection of 
DENV2 [115]. Albeit the Dengue virus could maintain its 
existence by developing virulent strains to survive and 
sustain, the above notion might support the plausible role of 
RNAi in the interruption of DENV infection and 
transmission by helping the mosquito vector to acquire a 
genetic resistance from Dengue infection.  Further studies 
are required to understand clearly the different aspects of the 
molecular nature of various components like DICER and 
RISC of the RNAi pathway in order to know their potential 
role against the arboviral infection such as dengue. 
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