Phytochemical composition and larvicidal properties of plants used for mosquito control in Kwaile County, Kenya

Joseph K Musau, James M Mbaria, Joseph M Nguta, Mbaabu Mathiu, Stephen G Kiama

Abstract
The present study determined phytochemical constituents and larvicidal activities of Tagetes minuta L., Adansonia digitata Linn., Ocimum suave, Plectranthus barbatus A., Azadirachta indica A. Juss., Lantana camara L. Phytochemical analysis established that saponins were present in all the plants. Alkaloids and flavonoids were present in 83% of all the extracts. Tannins and sterols were found in 67% of the plants. Terpenoids were present in 33% of the plants while glycosides were present in 16% of the plants. Larvicidal activity was tested on 4th instar larva of Aedes aegypti. At the concentration of 1mg/ml, all the extracts exhibited 100% larval mortality except aqueous extract of L. camara that killed 90% of the larvae. In aqueous extracts, T. minuta extract was most active with LD50 of 0.61 and LD95 of 2.256. Acetone extracts of T. minuta and hexane extract of was O. suave were most active as they caused 100% larval mortality at all tested concentrations thus LD50 and LD95 could not be determined for these extracts. These findings indicate that the selected plants have larvicidal activity. More studies are needed to evaluate the activities of the plants against other types of mosquito larvae and for possible development of larvicides that are safe to use and environment friendly.

Keywords: Aedes aegypti, Tagetes minuta L., Adansonia digitata Linn., Ocimum suave, Plectranthus barbatus A., Azadirachta indica A. Juss., Lantana camara L., Larvicidal activity, mortality

Introduction
Mosquitoes have almost a worldwide distribution occurring in all continents except in Antarctica [1, 2]. Their bite leads to allergic reactions, dermatitis and secondary infections [3]. They are vectors in transmission of malaria, filariasis, yellow fever, dengue, Japanese encephalitis, chikungunya, O’Nyong nyong, rift valley fever and west Nile virus [4]. Mosquito control can be achieved by biological, physical and chemical methods [5]. Biological control is difficult as mosquito predators such as fish, parasites and pathogens do not lead to rapid control of the larvae [6-8]. The predators also feed on beneficial organisms and cannot be used in polluted or temporary water areas such as puddles and vehicle ruts that form only in rainy seasons [9]. Physical control and habitat change are unattainable since it is impossible to eliminate all aquatic habitats of the mosquitoes like vehicle ruts, puddles, irrigation ditches, burrow pits, foot/hoof prints, edges of boreholes, swamps and rice fields. Other mosquito habitats are sources of water and/or food such as rice paddies [1]. Mosquito breeding sites are increased by activities like production of debris and pools that hold water and water storage containers around living premises [10]. Frequent use of insecticides for mosquito control has resulted in vector resistance for all classes of insecticides and undesirable effects on non-target organisms [11]. Insecticide treated bed nets reduce airflow making it hot to sleep under the nets besides been implicated as a factor for respiratory problems for those who sleep under them [12-13]. Repellents are applied to exposed areas of skin to provide temporary protection from mosquitoes. Synthetic repellents such as N, N-diethyl-m-toluamide (DEET), are expensive for everyday use and there are concerns about their toxicity and safety [5]. Organochlorine larvicides and insecticides lead to vector resistance. They persist in soil, plant and animal tissues and cause death to fish and other aquatic life [14]. Plants have been used since ancient times. Artemisia absinthium, Ferula asaifetida, Cassia spp, Ficus carica, Allium sativum, Urgenia maritima and Citrus medica were used as insect deterents and for personal protection [15]. Few plants have been studied for their larvicidal activity and only those...
Belonging to the families Asteraceae, Verbenaceae, Meliaceae, and Rutaceae have been reported as a potential source of secondary metabolites for larval control [16, 17]. In the family of Meliaceae 4% methanol concentration of leaf extracts of *Dysosylynum malabaricum* killed more than 97% of first instars, 92% of fifth instars, 93% of pupae and 91% of adults *An. Stephensi*, *Melia azedarach* methanol Leaf and seeds showed strong larvicidal activity against *An. Stephensi* while methanol leaf extract of *Azadirachta indica* Showed an acute and chronic LC50 and 95% CL at 824 and 265 ppm against *Cx. Pipens* [18].

Among the Asteraceae, methanolic leaf extracts Chromolaena odorata L. resulted in 100 per cent larval mortality after 24 h exposure at the concentrations of 220, 900 and 10,000 ppm respectively [19]. In another study on larvicidal activities of plants of Asteraceae family on *Anopheles arabiensis* larvae by Maharaj et al., 2012 [20] dichloromethane root extracts of Litogyne gariepina (DC.) Anderb. Exhibited 100% mortality in 96 hrs, aqueous leaf extracts of Pentzia globosa had. 100% mortality in 48 hrs while dichloromethane leaf extracts of *Psidia punctulata* (DC.) Oliv. & Hiern ex Vatke had 100% larval mortality in 144 hrs. Aqueous extracts of whole plant of *Vernonia natalensis* Oliv. & Hiern had 100% larval mortality in 48 hrs.

Ghosh et al., 2012 [18] document several plants of the Asteraceae family that had larvicidal activity against various types of mosquito larvae. Among these were petroleum ether leaf extracts of *Artemisia Annua* against *Anopheles stephensi* larvae whose LC50 value was 16.85 ppm after 24 h and 11.45 ppm after 48 hour of exposure. Others were acetone leaf extracts of *Ageratum conyzoides* against larvae of *Cx. Quinquefasciatus* in which potent larvicidal activity was noticed while acetone twig extracts of *Ageratina adenophora* had appreciable larvicidal activity against *Ae. aegypti* and *Cx. Quinquefasciatus* whereby at 24 h, LC50 value of the extract was found to be 356.70 ppm for *Ae. aegypti* and 227.20 ppm for *Cx. Quinquefasciatus*. The LC50 value of methanol leaf extract of *Chrysanthemum indicum* against *Cx. Tritaeiniorhynchus* was 42.29 mg/ml after 24 hours.

Studies on mosquito larvicidal activity of Verbenaceae species include the findings that acetone and methanol extracts of *V. payos* root bark and the acetone column chromatography fractions thereof exhibited larvicidal activity against larvae of *An. gambiae* within 72 hours [21]. In another study, it was proved that the extracts of the leaves of *Duranta erecta* Linn both have larvicidal activity on the larvae of *Cx. Quinquefasciatus* as exemplified by complete inhibition of adult emergence from the larvae at low concentrations of methanol and water [22] while methanol leaf extract of *Vitex negundo* against larvae of *Cx. Quinquefasciatus* had LC50 value of 212.57 ppm [19].

Examples of plants in the Rutaceae family that have larvicidal activity are dichloromethane stem extract of *Macroystylis squarrosa* Bartl. & H.L.Wendl. And leaves of *Toddaalia asiatica* (L.) Lam. that had 100% mortality in 24hrs and 72hrs respectively [20]. Others are ethanol extracts of seeds of *Citrus reticulata* activity against larvae *Cx. Quinquefasciatus* and *Ae. Aegypti* whose LC50 values against *Ae. aegypti* and *Cx. quinquefasciatus* larvae was 2,267.71, and 2,639.27 ppm respectively [18]. The aim of this study was to evaluate larvicidal activity of plants used for mosquito control in Msambweni district, Kwale County, Kenya’s south coast.

2. Materials and methods

2.1 Study area

The plants used during the present study were collected in Msambweni district, coordinates 4.47°S 39.48°E. It is in Kwale county of Kenya’s south coast, is hot and humid throughout the year with annual mean temperatures ranging between 23 °C and 34 °C and average relative humidity ranging between 60% and 80%. The area has monsoon climate, hot and dry from January to April while June to August is the coolest period. Rainfall is in two seasons with short rains from October to December and long rains from March/April to July [23].

2.2 Selection and collection of plant material

This study was initiated to establish whether the six plants that have been reportedly used traditionally as anti mosquitoes have larvicidal activity. Selection of plants for this study was based on the ethnobotanical and ethnopharmacological surveys carried on the area [24] coupled with review of relevant literature on ethnomedicinal plants used in East Africa and the Kenya’s south coast that have been reported to have activity against mosquito larvae. Field collection and initial identification of the plants was done with the assistance of traditional herbal practitioners from Msambweni District. The plants were further identified by a plant taxonomist at the Department of Land Resource Management and Agricultural Technology (LARMAT), University of Nairobi where voucher specimens were deposited. The plant parts were harvested during the optimal season of the months of September and November 2012. These are the months when plants in Msambweni district have adequate foliage due to rains and material of best quality is ensured [23]. After harvesting, the plant parts were cleaned with water and stored in dry bags. The collected plant material was then transported to the Department of Public Health, Pharmacology and Toxicology, University of Nairobi.

2.3 Preparation of plant material

The plant parts were scrutinized for any foreign matter or moulds and cleaned with distilled water. They were then chopped into small pieces and air dried under shade at the Department of Public Health, Pharmacology and Toxicology, University of Nairobi. When the plant material dried, it was ground into powder using a laboratory mill. The powdered plant material obtained was packed in 500gram portions and stored in clean air tight polythene papers [25].

2.4 Extraction

One thousand grams (1000 grams) of each plant powder was extracted separately using water, acetone and hexane. Water extraction was done by placing each powder in conical flasks and distilled water was added until the powder was fully submerged. Stirring and shaking of the mixture was done to ensure proper mixing. The conical flasks were corked tightly with stoppers. Shaking was done regularly to allow for percolation for four days. On the fifth day filtration was done using Whatman No.1 filter paper and the resultant liquid was collected in sterilized beakers, covered tightly in aluminum foil and stored in a refrigerator at 4° C pending freeze-drying. Freeze drying was done using Virtis Bench Top 3" Model freeze drier (The Virtis Company, Newyork), at the Department of Veterinary Anatomy and Physiology, University of Nairobi. The freeze dried material was used for subsequent larvicidal laboratory tests. For acetone extraction,
the plant powder was extracted separately by placing the powder in conical flasks and analytical grade acetone was added until the powder was fully submerged. Stirring was done to ensure proper mixing and shaking was done regularly to allow percolation. On the fifth day, the extracts were filtered using Whatman No.1 filter paper into another conical flask. Acetone was removed in a rotary evaporator at 60°C and collected for recycling. The resultant viscous substance was dried and stored in amber coloured bottles and in a refrigerator at +4°C and was eventually used for larvicidal laboratory tests. Hexane extraction was done by placing the powder in a conical flask and hexane was added until the powder was fully submerged. The conical flask was corked with appropriate stopper. For four days, thorough stirring was done to ensure proper mixing and percolation. On the fifth day, the extracts were filtered using Whatman No.1 filter paper into another conical flask. Hexane was removed in a rotary evaporator at 60°C and collected for recycling. The resultant viscous substance obtained was dried and stored in amber coloured bottles in a refrigerator and maintained at +4°C until larvicidal laboratory testing.

2.5 Phytochemical Screening
Phytochemical screening was done to determine presence or absence of secondary metabolites such as tannins, alkaloids, flavonoids, saponins, sterols, anthraquinones, terpenoids, sterols and glycosides. This was done according to established procedures [26-28].

2.6 Determination of Larvicidal activity
Larvae of *Aedes aegypti* were used for larvicidal determination. The eggs of *Aedes aegypti* were collected on a filter paper and reared in trays containing tap water maintained at 28±2°C. On hatching, the larvae were fed on yeast powder and glucose until they moulted to fourth instar by the seventh day. Larvicidal tests were carried out on newly emerged 4th instar larvae reared under standard conditions. The stock solution was prepared according to WHO, 2005 [29]. Dilutions of the extracts of 1, 0.5, 0.25 and 0.125% were made from stock solution [30-33]. The aqueous extracts were made in distilled water, acetone extracts in analytical grade acetone while hexane extracts in 3% DMSO [18]. One (1) ml of the dilution was made up to 250 ml with distilled water. Twenty five (25) larvae were exposed to different concentrations of the extracts. Larvae were considered dead if they were immobile, unable to reach the water surface and lacked head to tail flexion in response to tapping the beaker with a probe [9]. Moribund larvae were those incapable of rising to the surface or not showing the characteristic diving reaction when the water was disturbed [29]. Mortality was recorded after 24 hours and determined using Abbott’s formula [34].

2.7 Statistical analysis
The average larval mortality data was subjected to probit analysis for calculating LD₅₀, LD₉₅ and other statistics at 95% confidence limits of upper confidence limit and lower confidence limit using the SPSS V22 (Statistical Package of Social Sciences) software [35]. Results with P< 0.05 were considered to be statistically significant.

3. Results
The study area is shown in figure 1 below. Phytochemical results are presented in table 1 below. Secondary metabolites were present in extracts ranging from sixteen (16) percent to hundred (100) percent. Saponins were present in all the plant extracts while alkaloids and flavonoids were each present in eighty three (83) percent of all the plants tested. Tannins and sterols were each found in sixty seven (67) percent of all the plants tested. Terpenoids were present in thirty three (33) percent of the plants while glycosides were present in sixteen (16) percent of the plants. *Adansonia digitata* had alkaloids, tannins, saponins, sterols and flavonoids while terpenoids and glycosides were absent. *O. suave* had alkaloids, tannins, saponins, sterols, terpenoids and glycosides while flavonoids were absent. *Azadirachta indica* extracts had saponins, sterols and flavonoids while alkaloids, tannins, terpenoids and glycosides were absent. *Tagetes minuta* had alkaloids, tannins, saponins and flavonoids while sterols, terpenoids and glycosides were absent. *Plectranthus barbatus* had alkaloids, saponins, flavonoids, glycosides while tannins, sterols, and terpenoids were absent.

![Fig 1: Map of Kenya showing Kwale County, Msambweni district and Shimoni location](image-url)
3.1 Larvicidal activity

3.1.1 Determination of LD$_{50}$ and LD$_{95}$ at 95% confidence interval

Acetone extracts of $A.$ digitata had more activity followed by its aqueous and the hexane extract. Aqueous extracts of $O.$ suave had better activity than the acetone extract. However, at the tested hexane concentrations, both LD$_{50}$ and LD$_{95}$ could not be determined since larvae were killed in all the concentrations. Acetone and aqueous extracts of $A.$ indica had greater activity than the hexane extracts. Aqueous extract of $T.$ minuta has better than the hexane extract. The acetone extract of $T.$ minuta was most active than both the aqueous and hexane extracts. Acetone extracts of $P.$ barbatus were more active followed by the hexane extracts then aqueous extracts. Acetone extracts of $L.$ camara were more active followed by hexane and then aqueous extracts. Acetone extracts were more active followed by the aqueous and the hexane extracts.

Table 1: phytochemical composition of extracts of six plants used for mosquito control in kwale county, Kenya

<table>
<thead>
<tr>
<th>Family</th>
<th>Plant species</th>
<th>Life form</th>
<th>Part used</th>
<th>Alk</th>
<th>Tan</th>
<th>Sap</th>
<th>Ster</th>
<th>Terp</th>
<th>Flav</th>
<th>Gly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asteraceae</td>
<td>Tagetes minuta</td>
<td>Tree</td>
<td>Leaves</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Bombacaceae</td>
<td>Adansonia digitata Linn.</td>
<td>Tree</td>
<td>Leaves</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Labiatae</td>
<td>Ocimum suave</td>
<td>Herb</td>
<td>Leaves</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Labiatae</td>
<td>Plecntranthus barbatus</td>
<td>Shrub</td>
<td>Leaves</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Meliaceae</td>
<td>Asdrachica indica</td>
<td>Tree</td>
<td>Leaves</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Verbenaceae</td>
<td>Lantana camara L</td>
<td>Shrub</td>
<td>Leaves</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Key: Alk: Alkaloids; Tan: Tannins; Sap: Saponins; Ster: Sterols; Terp: Terpenoids; Flav: Flavonoids; Gly: Glycosides

Table 2: Larvicidal efficacy of six plants used for mosquito control in Kwale County, Kenya

<table>
<thead>
<tr>
<th>Family</th>
<th>Plant species</th>
<th>Life form</th>
<th>Part used</th>
<th>Aqueous</th>
<th>Acetone</th>
<th>Hexane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LD 50</td>
<td>LD 95</td>
<td>LD 50</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Tagetes minuta</td>
<td>Tree</td>
<td>Leaves</td>
<td>0.743</td>
<td>2.123</td>
<td>0.64</td>
</tr>
<tr>
<td>Bombacaceae</td>
<td>Adansonia digitata Linn.</td>
<td>Tree</td>
<td>Leaves</td>
<td>2.598</td>
<td>3.987</td>
<td>2.453</td>
</tr>
<tr>
<td>Labiatae</td>
<td>Ocimum suave</td>
<td>Herb</td>
<td>Leaves</td>
<td>1.366</td>
<td>3.784</td>
<td>1.363</td>
</tr>
<tr>
<td>Labiatae</td>
<td>Plecntranthus barbatus</td>
<td>Shrub</td>
<td>Leaves</td>
<td>0.61</td>
<td>2.256</td>
<td>-</td>
</tr>
<tr>
<td>Meliaceae</td>
<td>Asdrachica indica</td>
<td>Tree</td>
<td>Leaves</td>
<td>1.914</td>
<td>4.065</td>
<td>1.501</td>
</tr>
<tr>
<td>Verbenaceae</td>
<td>Lantana camara L</td>
<td>Shrub</td>
<td>Leaves</td>
<td>2.227</td>
<td>5.436</td>
<td>1.638</td>
</tr>
</tbody>
</table>

3.1.2 Larval mortality

The extracts showed larvicidal activity which was dependent on the type of the extract and the concentration. At the highest concentration of 1mg/ml, all the extracts exhibited a hundred (100) percent mortality of the tested larvae except aqueous extract of Lantana camara that killed ninety (90) percent of the larvae. Acetone had most larvicidal activity of hundred percent at 0.5mg/ml of the extracts except for Ocimum suave where its mortality effect was only fifty (50) percent of the larvae.

4. Discussion

Mosquito borne diseases are a major cause of morbidity and mortality in the Sub-Saharan Africa as well as being obstacles to socio-economic development [36]. In Kenya 170 million working days are lost each year because of malaria illness [37]. Rift Valley Fever is endemic to Africa and the Middle East with outbreaks of resulting in human illness and livestock losses in Kenya [38]. Larval control is easier and effective compared to other methods of mosquito control which have serious limitations [1, 5, 9, 39]. The larvicidal activity was dose dependent and at the highest concentration of 1mg/ml, all extracts exhibited 100% mortality. This could be due to presence of secondary metabolites especially alkaloids and flavonoids. Alkaloids have long history of use as insecticides. They include sabadilla obtained from the seeds of Schoenocaulon officinale whose mode of action is similar to that of the pyrethrins. Nicotine, nornicotine and anabasine, are synaptic poisons that mimic the neurotransmitter acetylcholine. They cause symptoms of poisoning to the insects similar to that of the pyrethrins.

5. Conclusion

Mosquito borne diseases infect over one billion people worldwide annually with over one million resultant deaths [45]. These diseases have deleterious effects on the economies of such countries due to loss of man hours and their overall financial implication in terms of hospital bed occupancy. It is therefore imperative to find ways of controlling mosquitoes that are relatively harmless to non-target organisms and...
present little risks to users and consumers. Plant-based products are culturally acceptable, economical and locally available. Of the methods of controlling mosquitoes, larviciding approach is the more proactive, pro-environment, target specific and safer approach than controlling adult mosquitoes. Larvae have low mobility in the breeding habitats and are easy to control in these habitats. All the plants in this study had hundred percent (100%) mortality on Aedes aegypti larvae after twenty four hours. These plants should further be evaluated for possible development of efficacious, environment friendly larvicides that are not harmful to the users.

Acknowledgement
The authors acknowledge the support granted by Carnegie Corporation through Rise AfNet University of Nairobi node to carry out this study.

6. References
23. Muthaura CN, Rukunga GM, Chhabra SC, Mungai GM, Njagi ENM. Traditional antimalarial phytotherapy remedies used by the Kwaile community of the Kenyan Coast Journal of Ethnopharmacology 2007; 114;377-386.

